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Abstract. Energy and particle confinement in tokamaks is usually anomalous, greatly 
exceeding neoclassical predictions. It is desirable to develop an understanding of the underlying 
processes to increase our confidence in extrapolation of tokamak behaviour towards reactor 
regimes. The literature abounds with theoretical expressions for anomalous transport coefficients 
based on turbulent diffusion due to various micro-instabilities. These often purport to provide 
explanations of tokamak confinement Y the level of global scaling laws. However, comparison 
with experimental data from local transport analyses offers a f3i more stringent test of these 
theories. This review presents the available theories for turbulent transport coefficients, 
paticticularly ion and electron thermal diffusivities. in a way that will hcilimte B programme 
of testing models against dam. It provides n brief description of the basis for each theory to 
place it in context and then presents the resulting turbulent diffusivity. Particular emphasis is 
placed on the validity conditions under which the expressions may be used; this is imponat 
when subjecting them to meaningful tesfs against data. The present review emphasizes the more 
recent developments. building on earlier ones by Liewer and Ross er d .  The results of this 
work have already been of value in canying out a programme of testing theories against high 
quality JET data (Connor er a1 and Tibone er al). 

1. Introduction 

The plasma physics literature abounds~with theoretical expressions for anomalous transport 
coefficients (see the earlier review by Liewer 1985) purporting to explain the confinement 
properties of tokamaks, often on the basis of crude comparisons at the level of energy 
confinement time scalings. The availability of detailed profile data on transport coefficients 
from machines such as JET in a range of relevant and varied regimes provides an opportunity 
to undertake a systematic comparison of these theories with experiment. As a first step ‘to 
realizing this we review the literature on anomalous transport and collect together published 
transport coefficients, with an emphasis on the more recent ones. This extends and updates 
the similar exercise of Ross (1987). 

The vast majority of these transport coefficients are based on turbulent transport due to 
fluctuations on a microscopic scale 1en-d such as the ion Larmor radius, collisionless skin 
depth or resistive layer width. Consequently they can be cast in the generic gyro-Bohm 
form (Connor and Taylor 1985; Hagan and Frieman 1986; Connor 1988) 

(1.0.1) 

where u.~ is the electron collisionality, 6 is the ratio of thermal to magnetic energy, 7 is 
the ratio of electron to ion temperature, mj is the species mass. q is the safety factor, s is 
the magnetic shear, ~j = 1 V In T,  I/iV In nj I (where T, and nj are the species temperature 
and density), L;’ = IVlnnl,  E ,  = L,/R and R is the major radius. We have also defined 
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xe.i = 2Fe,i(u*e, B ,  t, me/%. q .  s, tli. tie. en.. .) 
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the sound speed, e, = and the ion Larmor radius evaluated at the sound speed, 
ps = a l e e .  In practical units (i.e. temperature in keV, magnetic field in Tesla, length 
scales in metres) we have 
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p,'/2T:l2 
xe,i = 3.23 Fe,i (1.0.2) BZL,  

for the difisivity (in m's-') where we have defined p, as the ratio of the ion to proton 
mass. Equation (1.0.1) is to be compired with the Bohm form 

Xe,i - PscsF& (1.0.3) 
which is associated with transport due to longer wavelength structures whose scale is related 
to the plasma minor radius. 

Since the information which we collect is to be useful for comparison with experimental 
data we take care to define the validity conditions for the applicability of the various theories 
and to express the results in a form convenient for evaluation. If the transport coefficients 
are large once an instability condition is exceeded the plasma profiles may then sit at 
marginal-stability; stability criteria are therefore of value for comparing with experiment 
and attention is also drawn to them. In addition to compiling the expressions we comment 
in some detail on their physical and theoretical basis in order to provide understanding 
and allow an assessment of their value. Some complementary aspects have been addressed 
recently by Horton (1990). 

The structure of the review is as follows. First, theories of ion transport, essentially 
those involving ion temperature gradient turbulence, are described and discussed in section 
2. After a brief overview in section 2.1 we discuss the slab, toroidal and trapped-ion 
VTj modes in sections 2.2, 2.3 and 2.4 respectively, adding some conclusions in section 
2.5. Treatments of electron transport due to electrostatic and electromagnetic drift-wave 
turbulence follow in section 3. In section 3.1 we provide an overview and then discuss 
general transport coefficients based on the assumption that drift-wave turbulence exists in 
the tokamak plasma without specific reference to its source (in section 3.2). We then consider 
specific instabilities which may be responsible for driving the electrostatic (in section 3.3) 
and electromagnetic (in section 3.4) turbulence. Electrostatic modes considered include the 
'universal' mode and trapped electron modes. In the electromagnetic drift-wave subsection 
we consider the electron drift wave, the drift micro-tearing mode and the )le mode. Some 
general conclusions are drawn in section 3.5. In section 4 we consider the transport due to 
magnetic islands which arise from nonlinear instabilities. After an overview in section 4.1, 
the various drives due to bootstrap currents, drift effects, etc are described in section 4.2; 
some concluding remarks are made in section 4.3. Finally, in section 5, we consider theories 
of transport due to magneto-hydrodynamic (MHD) turbulence with an Ohm'slaw including 
resistivity (incorporating neoclassical effects) or electron inertia. Section 5.1 provides an 
overview and section 5.2 addresses the fluid pressure-gradient driven modes (e.g. resistive 
ballooning modes) while section 5.3 considers resistivity-gradient modes; some conclusions 
are in section 5.4. Some overall concluding remarks are made in section 6. 

Although in principle we would wish to include the whole matrix of transport coefficients 
these are rarely all given. The emphasis, therefore, is on electron and ion thermal 
diffusivities but other coefficients are listed when possible. For ease of use these are also 
presented in tabular form in appendix B; a table of the notation used is given in appendix 
A. 

The results of this survey have been used by E T  and Culham colleagues, in a 
comparison of theories of anomalous transport with JET data and the results are reported 
in Connor etal (1993) and Tibone etal (1994). 
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2. Ion transport due to VTi instabilities 

2.1. Overview 

We begin with a brief overview of earlier work on the ion heat transport which might be 
expected to result from instabilities driven by an ion temperature gradient; this sets the scene 
for the discussion of recent work which follows in sections 2.2, 2.3 and 2.4. Such modes 
are often characterized by a value of vi (where vi is the ratio of the density length scale to 
that of the temperature) and are therefore often referred to as 'vi modes'. However, in the 
limit of a flat density profile (vi + CO) the mode is characterized by a critical temperature 
gradient, and hence the mode is also called the VTi or ion temperature gradient (ITG) 
driven mode. A whole family of these modes exists depending on the tokamak conditions. 

The most basic version of the VTj instabilities is the slab mode, which occurs as a 
result of ion acoustic waves coupling to a radial gradient in the ion pressure. The two fluid 
dispersion relations for the electrostatic modes (of frequency w and wavenumber kll along 
the magnetic field and k, perpendicular to it) in a shearless slab takes the form (Horton and 
Varma 1972) 

(2.1.1) 

where w*e = kypsc , /L ,  is the electron diamagnetic frequency. In the limit vi >> 1 this 
gives rise to the unstable solution 

(2.1.2) 

the so-called vi mode. Consideration of Landau damping and finite Lamor radius ( E R )  
in a kinetic description yields a critical value of vi for instability given by 

vie 0.95 (2.1.3) 

achieved for kyp, N 1. Inclusion of shear leads to a radial eigenvalue problem and the 
growth rate depends on the radial mode number 1. In particular, the maximum growth rate 
occurs for (k,p,)* = s(1 +vi)-' and is given by 

(2.1.4) 

for L J L ,  << 1 (e.g. Lee and Diamond 1986). 
The turbulence driven by the vi mode is expected to give rise to ion heat transport. 

Scale invariance properties of the equations describing the mode (Connor 1986a) indicate 
that the ion heat diffusivity, xi, must take the form 

(2.1.5) 

One of the earliest calculations of the heat diffusivity resulting from vi mode turbulence 
was made by Kadomtsev and Pogutse (1970). The effects of the turbulence are modelled 
by inserting an effective heat diffusivity, x,,. into the ion drift kinetic equation and solving 
for the radial eigenmode structure. An expression for xi is determined from the condition 
that it should render the most dangerous mode stable, thus 

(2.1.6) 
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which is indeed of the form predicted by the scaling arguments. We shall see later that in 
subsequent work by Lee and Diamond (1986) (using turbulence theory) and Connor (1986a) 
(using an extension of the scale invariance properties) a form for x is derived which increases 
with shear. Howevcr, numerical simulation by Hamaguchi and Horton (1990) indicates a 
positive dependence on L,. The discrepancy is associated with an approximation in the Lee 
and Diamond (1986) and Connor (1986a) works and the majority of subsequent improved 
calculations predict xi to increase with L,. Terry et al (1988) considered the higher radial 
eigenmode numbers, 1 and found that while x - l/Ls for 1 = 0, for higher 1, xi has a 
positive scaling with L,, in agreement with numerical simulation. Furthermore, the transport 
is predicted to be dominated by the higher 1 eigenmodes as a result of their greater radial 
mode width. 

Horton et a1 (1981) and Guzdar et al (1983) consider the mode in toroidal geometry 
where it is found that unfavourable curvature replaces the acoustic wave as the main driving 
mechanism. The mode then has a different spatial structure and becomes more ‘ballooning’ 
in nature. Using a fluid picture (e.g. Horton e t d  1981) one finds modes poloidally localized 
in the region of unfavourable curvature with a maximum growth rate 

~ - d z X T T i ) .  
w*i 

The threshold in vi is determined by Landau drift resonances (Romanelli 1989): 

€?$ < 0.2 
en > 0.2. I ’  1 + 2.5(~, - 0.2) t l ic  

A quasilinear estimate of the resulting ion heat transport (Horton et d 1981) yields 

(2.1.7) 

(2.1.8) 

(2.1.9) 

The two distinct mode structures lead to a natural categorization of the instability into 
either ‘slab’ or ‘toroidal’. As shown in the work by Horton et al (1981) the theories apply 
in two different regions of parameter space. In particular, 

R 
2 

L, < - =. slab theory applies 

R 
2 

L, > - + toroidal theory applies. (2.1.10) 

This may lead to complications when comparing theoretical predictions with a given 
tokamak because at the centre (where the shear length is typically very long) a toroidal 
theory applies and towards the edge (with shorter shear lengths) slab theories may be more 
applicable. 

Consideration of toroidicity introduces a further complication-the trapped particles 
which exist as a consequence of the inhomogeneity in the magnetic field. For long- 
wavelength perturbations such that w 5 w*i < U b i  (where w,i and Ubi are the ion diamagnetic 
frequency and bounce frequency respectively) trapped and passing particles have different 
behaviours (Kadomtsev and Pogutse 1971) and this gives rise to a new class of instabilities, 
called the trapped-ion modes, which can be driven unstable by the ion temperature gradient. 
These modes can be categorized according to the value of vi (Biglari et a1 1989). For 
vi -= $ ion collisions are stabilizing and the mode is destabilized by electron collisions. 
Kadomtsev and Pogutse (1971) analyse this mode using a model involving trapped and 
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passing electron and ion fluids. In the limit vJ6 >> &me they derive the following 
complex mode frequency for the long-wavelength 'dissipative' trapped-ion instability: 

&U*, vi . 2 w = - -  i- +I-- 
Ifs E ( ~ + z ) ~ v ~  

(2.1.1 1) 

For increasing collisionality the mode is stabilized. In fact, inclusion of passing ion Landau 
damping in the analysis leads to the stability criterion (Kadomtsev and Pogutse 1971) 

113 
V, - > 0.526 (2) rlm -aql 

Ubi 
(2.1.12) 

where m and n are chosen so that jm - nql < 1. Using xi - f i ' y l k :  (where the f i  
factor represents the fraction of trapped ions) yields 

(2.1.13) 

As qi is increased above the value of $ the mode characteristics alter. The most significant 
change is that ion collisions now become destabilizing, tapping the energy source of the ion 
pressure gradients (Biglari eta1 1989). Finally, at large qi (z0(C1l2)) the mode becomes 
independent of particle collisions and is fluid-like in nature. 

We consider three cases of the VT, instability (slab, toroidal and trapped ion) in 
the following three subsections (respectively). In each case we will discuss the stability 
thresholds and give expressions for the thermal diffusivity. As noted in the introduction, 
these have the form 

pl/ZTa/' 
xi = 3.23 F(7i. r .  s, 4,  E*, . . .) (2.1.14) 

where F is a function of the dimensionless variables of the equilibrium. We shall therefore 
quote values for F in this section, rather than xi. The results given are for a plasma with a 
singly charged ion species with no impurity present. Impurities can be taken into account 
by following the prescription derived by Mattor (1991) who demonstrates that one should 
replace the ion density scale length with that of the electrons. 

L, BZ 

2.2. Slab V c  mode 

We now consider recent developments in the theory of the VT, mode in a slab geometry. 
Before transport due to this mode can be addressed one should first determine stability and 
this is governed by the value of qi. For large qj (> qJ the mode is unstable and there are 
several theories which calculate qF. As noted in (2.1.3) earlier collisionless theories found 

qc = 0.9 (2.2.1) 

but several, more recent, theories obtain modifications to this. Thus work by Hassam et 
al (1990) shows, using a fluid treatment, that very long wavelength modes (kllu,j,i < vii) 

behave collisionally close to marginal stability, and the threshold is lowered to 

c - 3 '  - 2  (2.2.2) 

The above two results imply that flat density profiles (such as those observed in H-mode 
plasmas) should be very unstable. This is apparently in contradiction with the observed 
good confinement properties of H-mode plasmas. However, when L J L ,  2 1 the instability 
criterion becomes a condition on VT, rather then qi. For example, in their analysis of 
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flat density profiles Hahm and Tang (1989) find that the critical temperature gradient for 
stability is 
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(2.2.3) 

where 1 represents the radial mode number which has been excited. In the case of an 
inverted density profile (i.e. one in which the density increases towards the edge) Hahm 
and Tang find that for instability one requires vi < qc, where 

(2.2.4) 
The use of a fluid treatment to obtain this result is justified as the real part of the mode 
frequency does not go to zero at marginal stability. 

Using weak-turbulence theory it has been shown (Mattor and Diamond 1989) that close 
to the threshold for linear stability the value of xi is much lower than would be obtained 
from an extrapolation of the results of sfrong turbulence theories (valid at much higher vi). 
This result leads to the conclusion that it is not the threshold for linear stability which is 
important; rather one should use the threshold for strong turbulence mattor 1989). This 
leads to a slightly higher ‘effective’ threshold of 

qc 2 1.2 (2.2.5) 

which might be more relevant for a marginal-stability condition. 
Let us now turn to the ion thermal conductivities which are predicted to exist if the 

plasma is unstable to the slab-like qj mode. Early work of Connor (1986a) and Lee and 
Diamond (1986) obtain expressions for xi which increase with the ‘shear’ parameter LJL,. 
In particular, Connor (1986a) uses the scale invariance properties of,the fluid equations 
describing the qj  mode in the limit L J L ,  < 1, qiL./L. >> 1 to derive 

vc = -(I + 5 )  . 

(2.2.6) 

where g is a numerical factor. Lee and Diamond (1986) explicitly calculate saturated 
turbulence levels in the same limits as those considered by Connor. From these they derive 

(2.2.7) 

where C(qj) = (7r/2) In(1 +vi). Taking krps = 0.3 and bearing in mind that C(Re) varies 
slowly with vi, this result is very similar to that obtained by Connor. 

Subsequent numerical analysis of the fluid equations by Hamaguchi and Horton (1990) 
shows that an inertial term dropped by Connor (1986a) and Lee and Diamond (1986) can 
be important. In fact, using numerical simulation to retain the terms which were dropped 
in the above two calculations gives a decrease in xi as L J L ,  is increased. In particular, 
they derive 

Ln 312 F = g-vi 
L, 

L, F = IC(vi)lz[(l+ ~ l i ) / ~ l ~ ( k y ~ J z  

5 
(2.2.8) 

by a careful scanning of the parameter space. The dependence on L, is taken from the 
numerical solution. However, the choice of the linear scaling with vi - vc is biased by 
a mixing-length theory that was alsq described in this work. Although their numerical 
work is not in contradiction with this scaling, it does show that higher powers of vi - qc 
(up to about 1.5) could produce a tolerable fit. The authors state that one can also fit the 
numerical results with an (Ln/Ls)-P scaling (with p = f for L J L ,  c 0.1 and p = 2 for 
L J L ,  20.5). 

. 
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As discussed in the overview, Terry et al (1988) show that a positive scaling of x 
with L, is obtained~by considering the higher-order radial eigenmodes. Furthermore, these 
higher-order modes are predicted to dominate the transport. 

Following Hamaguchi and Horton, this decrease of xi with shear is a common feature 
of subsequent heat diffusivity calculations. For example, using gyrokinetic equations and 
mixing-length estimates of the transport, Mattor (1989) calculates values for xi in the limits 
vi 2 vc and vi >> qc. Using the trends from these two results and numerical studies, the 
following fit for F is derived: 

312 
F = 0.037 (k)* (e) (vi - l.2I3. (2.2.9) 

This gives a stronger vi dependence than that predicted by Hamaguchi and Horton (1990) 
but the dependence on the shear is consistent with their alternative (power-law) shear scaling 
(for L J L ,  20.5). 

Hassam et al (1990) investigate the properties of the qj mode close to threshold. As 
discussed above, the plasma appears collisional for long-wavelength modes (kiluhi < wii) and 
there exists a lower threshold than for the shorter-wavelength modes. It is found that these 
long-wavelength modes contribute relatively little to the transport in the region 2 c qi < 0.9 
(i.e. the region unstable to long-wavelength modes but still stable to the short-wavelength 
modes). Above qj = 0.9 the short-wavelength modes become unstable and the transport 
increases but is still relatively low up to vi - 2. Once q, exceeds 2 the transport becomes 
very large indeed. This is similar to the results of Mattor and Diamond (1989) obtained from 
a weak turbulence theory close to threshold. Using mixing-length arguments the following 
expression is derived for these long-wavelength (collisional) modes when L J L ,  << 1: 

(2.2.10) 

where vii is the ion-ion collision rate. The form factor h is a function of vi which satisfies 
h ( $ )  = 0 and rises monatonically with qj to be of order unity at qi = 2. The shorter- 
wavelength modes contribute to the thermal diffusivity through the (collisionless) expression 

F = 1.4g(qi, L,/L,)r-312 2 z qi > 0.9. (2.2.11) 

A numerical scan of parameter space indicates that, for L J L ,  + 0, g(q)  < 0.12 for 
vi < 2. Comparing the two transport rates in the region 0.9 < vi < 2 indicates that the 
collisional version will dominate if 

(2.2.12) 

Unfortunately no scaling of the form factors is given, merely their maximum values in  the 
range vi < 2 (as quoted above). However, a diagram of numerical values of xi as a function 
of qi shown in this paper indicates that the collisional version scales like - (vi - 2)' and 
the collisionless case like - (vi -,0.9)'.5. 

To conclude this subsection on the slab-like modes we mention a 3D simulation of 
qi turbulence performed by Kotschenreuther (1991) in which the gyrokinetic approach is 
compared with the fluid one. No scaling of xi is given but it is interesting to note the 
observed relation 

(2.2.13) 

To summarize, early heat diffusivity calculations predicting a rise in  xi with increasing 
shear were shown to be in error. More recent theories retain important physics which 

]doetie 1 Euid 
xi IO xi 
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has been omitted from the early ones to derive scalings of xi which decrease with shear. 
This trend is also observed from  the^ higher-order radial eigenmodes. These more recent 
theories are resonably consistent in their shear scaling, with xi - (LJL.)'. Turning to the 
dependence on vi there seems to be no one scaling common to all slab theories. All the 
theories which we have studied here predict an increase of xi with 72 but the rate of increase 
varies: linear for fluid turbulence close to threshold, quadratic for fluid turbulence far above 
threshold and cubic for gyro-kinetic theory close to threshold. Strictly, fluid theory is not 
valid close to threshold, in which case the cubic scaling predicted by the gyrokinetic theory 
is more applicable. Such a strong dependence of the transport on the drive for the turbulence 
suggests that plasma profiles may be held at marginal stability. Far above threshold, fluid 
theory is accurate and then we expect xi - q:. 
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2.3. Toroidal VTj modes 

In recent years there has been an increased effort on transport coefficients due to qi 
turbulence with the toroidal effects included and there have been many modifications to 
the original work of Horton et a1 (1981). We first consider the thresholds for the onset of 
the turbulence. 

Dominguez and Waltz (1988) analyse the linear stability thresholds in the fluid limit for 
flat density profiles. Although the validity of the fluid limit may be questioned for threshold 
calculations, this work is important as it demonstrates that stability criteria on vi become 

---stability criteria on (L=i/R) in the limit of a flat density profile (as in the case of the slab 
model discussed in the previous subsection). 

In order to calculate the stability threshold one should strictly use kinetic theory as, for 
example, in the calculation of Biglari el a1 (1989). They consider both peaked and flat 
density profiles separately. In the case of a peaked profile they apply the ordering 

(2.3.1) 

where o b j .  &j and Odj  are the species bounce, transit and magnetic drift frequencies, 
respectively. The first of these constraints (Obc, ok >> U&) is easily satisfied while 

Wbe. Ute >> %i > a d i  > o b i ,  6% 

(2.3.2) 
R 
2 W*i > u d i  Ln < - 

and therefore sets the limitation that the density gradient should not be too flat: 

This is a severe constraint, particularly close to the plasma centre where q approaches unity. 
The result of such a constraint is that the ion transit resonance can be neglected, but as 
shown by Romanelli (1989) this resonance has a small effect. There is, therefore, some 
justification in ignoring it. The mode frequency, OJ is ordered like wdi so collisions can be 
neglected if 

(2.3.4) vi < wdi + v,i < ~ - ~ ' ~ q k g p i .  

With these constraints the following conditions lead to instability: 

R e 0 or > 213 and 
c 

(2.3.5) 

where (LTi /R)c  is some critical value obtained by a numerical solution of the dispersion 
relation. 
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The above theory does not apply to a flat density profile because of the condition 
w,i > wdi which has been applied. I n  this limit Biglari et al demonstrate that the 
only relevant stability parameter is ( L T J R ) .  Numerically, for bL = kllL, = 0 (where 
2b l  = (k lp i )2 )  they find 

Lri - ,?- 0.35 
R (2.3.6) 

for stability in a plasma with a flat density profile. In this case they give the stability diagram 
sketched in figure 1, valid for all L J R .  The fluid model of Dominguez and Waltz (1988) 
(which is in good qualitative agreement with Biglari et al 1989) suggests that increasing 
bL pushes the stability boundary to the left as indicated by the arrow in figure 1. 

h l R  A 

increase bl 

""Stable 

Ilable 

Figure 1. Marginal stability plots for the toroidal ion temperature 
gradient mode of Biglari ern1 (1989). I 

Romanelli (1989) derives a threshold for rli by solving the gyrokinetic drift equation 
numerically, retaining the @ d / O  resonance. Using a fluid limit of the equations, Romanelli 
demonstrates that w - E,!'~W*~. With this ordering, the neglect of collisions requires 

(2.3.7) 

This is therefore a weaker constraint on the collisionality than that of Biglaxi et a1 (equation 
(2.3.4)) if the density scale length is short. Solving the gyrokinetic equation numerically 
and using a fitting procedure, Romanelli then gives a critical r ~ i  of 

1 E ,  < 0.2 
Ea > 0.2 = [ 1 + 2.5(~, - 0.2) (2.3.8) 

as quoted in (2.1.8). For e,, >> 1 (i.e. the flat density profile case) this result becomes 

(2.3.9) 

or simply 

(%) =0.4 (2.3.10) 
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which is similar to that given by Biglari et nl in (2.3.6). 
The critical vic given by Romanelli (1989) in (2.3.8) is independen't of both shear and 

safety factor. Guo and Romanelli (199,3) investigate the dependence of the threshold on these 
using a numerical calculation of the ion gyrokinetic equation in ballooning space. Trapped 
electron effects are not included and circulating electrons are assumed to be adiabatic. For 
wavelengths of the order keps % cT they give the following fit to the numerical results: 

with 

(2.3.11) 

(2.3.12) 

It is interesting to note that in the slab limit (s/q >> 1) one recovers the scaling of Hahm 
and Tang shown in (2.2.3). Support for this expression is also provided by the work of 
Xu and Rosenbluth (1991) with their gyrokinetic particle simulation code. They model 
the linearized gyrokinetic equation for circular flux surface equilibria in the ballooning 
limit and investigate the dependence of the threshold on tokamak parameters. Full trapped 
particle (ion and electron) dynamics are retained. In particular, for r = s = 1, q = 2 
they obtain E& = 0.21 for keps = 0.4, while the fit of equation (2.3.11) gives cFi = 0.19. 
Xu and Rosenbluth do not distinguish between trapped-ion modes and the circulating ion 
mode (discussed here). However, the insensitivity of the Xu and Rosenbluth result to the 
ion collisionality in this parameter regime implies that it is the circulating mode which is 
studied. A recent numerical treatment by Garbet et al (1992) derives a critical temperature 
gradient N 0.01 for the circulating mode which is much below the result given here. In 
fact, the mode is stable for typical tokamak parameters. However, they do find a trapped-ion 
branch with stability properties very similar to those described by (2.3.11); this mode will 
be discussed in the next subsection. 

The toroidal thresholds discussed so far assume circular flux surfaces, An investigation 
into the effects of shaping has been made by Hna et al (1992) who extend the model of 
Xu and Rosenbluth (1991) to investigate the effects of triangularity and elongation on ITG 
mode stability. The temperature gradient threshold is then found to be relatively insensitive 
to triangularity but has a significant dependence on elongation. In particular, the following 
expression is derived: 

where M increases with the elongation, K, as 
1 M = - d z S  - 1 + K z ( l  - S ) ' .  

2q 

(2.3.13) 

(2.3.14) 

In the limit K + 1 this expression depends on 7 and s/q and, although the magnitude is 
similar to that obtained by Guo and Romanelli (1993), the scaling is slightly different. 

Trapped-electron dynamics have an interesting role to play in the stability analysis and 
can give a significant modification to figure 1 (Romanelli and Briguglio 1990; Nordman 
et al 1990; Guo and Romanelli 1993). For flat density profiles stability is not affected 
significantly. However, for low E ,  values, the trapped-electron dynamics destabilize the 
mode and, as illustrated schematically in figure 2, no stable window exists for peaked density 
profiles. Increasing electron collisionality (U, 2 1) suppresses trapped-electron effects and 
the stability diagram returns to that shown in figure 1. 
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Figure 2. Marginal-stability curves in the qLfn plane for the ITG mode 
including uappedelemn effects. The full c w e  is for U,. = 0 and the 
broken curve neslects happed electrons. 

This completes our survey of the thresholds and we turn now to recent predictions of the 
ion heat transport. Biglari et al (1989) derive an expression for the thermal diffusivity, xi. 
using the fluid equations and employing mixing-length estimates. The fluid approximation 
requires qi >> 1 and then 

(2.3.15) 

An upper bound on kepi of (1 + qi)-’I2 (as obtained from a lmear analysis) can be used 
to obtain a simple expression for the upper limit of xi. A gyrokinetic simulation of the 
fluctuation spectrum by Sydora et al (1990) (and supported by the more recent simulation 
of Xu and Rosenbluth 1991) shows that the important range of kepi is 0.1 < b p i  < 0.5, 
suggesting that this upper bound on xi could be close to the actual value. 

It is interesting to note that Biglari et a1 also give a scaling for the electron thermal 
diffusivity, xe, which results from the electron transport caused by ion-pressure-gradient- 
driven turbulence: 

The last factor on the right is a correction factor which has been added to the Biglari 
result to allow it to be extended to a low collisionality regime, representing the transition 
from dissipation due to collisional effects to dissipation due to the magnetic drift resonance 
(Romanelli et a[ 1986). They also give the particle diffusion coefficient, D 

D - ~e (2.3.17) 

where they take the non-adiabatic part of the electron response to the ITG driven potential 
fluctuations to be due to dissipative trapped-electron dynamics. 

Guo et al (1989) use the fluid limit of the electrostatic gyrokinetic equations in their 
analysis and consider flat density profiles so that q: >> qc xi is calculated from the estimate 
y / k i  with ET << 1 assumed in calculating y .  Expressions for xi are then calculated in two 
different wavelength regimes (a) the weak ballooning limit (bo < e;/’) and (b) the strong 
ballooning limit (1 >> be >> E;”). A maximum value of xi occurs for the be for which 
these match leading to 

(2.3.18) 

Strictly, q here is the cylindrical qc but for large aspect ratio there is no need to distinguish 
between the two. 
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Hong and Horton (1990) solve the 2D fluid equations describing the toroidal vi instability 
and use mixing-length estimates to derive the ion thermal diffusivity. The fact that fluid 
equations have been used implies that the results can only be applied when qi is far above 
threshold. For p,/L. < s < 26, they derive 

(2.3.19) 

and for very low shear (s e p,/L,) the radial mode width An - L, thus giving a Bohm 
scaling for xi 

(2.3.20) 

Using a modified mixing-length approximation (Horton et a1 1981), Dominguez and 

xi = 5 314 Gn 314 (Vi - ~ c : 1 ' / 4 P s c s .  

Waltz (1989) derive the following scaling for F 

where O(x)  is the Heaviside function and 

(2.3.21) 

(2.3.22) 

with c2 - 1 and c1 in the range 

0.2 < < 0.3 (2.3.23) 

The numerical coefficient, ci, is taken to be 0.3 and kip, - 0.3. Again, the result is only 
applicable to plasmas in which qi >> 1. 

The earlier work of Horton et a1 (1981) has since been extended by Hong et al (1986) 
to include kinetic effects. They use gyrokinetic theory for the ions and adiabatic electrons, 
and consider the frequency range w >> wdi > knqi, which imply 

(2.3.24) 

i.e. the density profile must not be too flat and the shear must not be too large. With these 
restrictions and considering qi 2 2 ,  Hong et a1 derive the following scaling for F: 

where 

(2.3.25) 

(2.3.26) 

Romanelli (1989) uses a kinetic ion response without expanding in wd/w and employs a 
quasilinear mixing-length estimate to derive an expression for xi. Because kinetic effects are 
kept, the theory is valid down to very low vi. close to the threshold value. The calculation 
of the ion energy flux assumes 

ET << 1 and vi > 26, (2.3.28) 
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together with condition (2.3.7). Taking kip: = O.lz-', Romanelli obtains 

(2.3.29) 

with given in (2.3.8). In a later work Romanelli and Briguglio (1990) use kinetic theory 
to investigate the micro-instabilities that are driven by trapped electrons and ion temperature 
gradients. The expressions for the fluxes are rather complicated and we refer the interested 
reader to appendix C of the reference. 

A recent article by Romanelli et a1 (1991) describes a kinetic theory of the ion 
temperature gradient driven mode in the limit of long wavelength, kop; - E ~ .  They 
perform a calculation in toroidal geometry and find that three modes are important at these 
wavelengths: a slab-like mode and two toroidal modes. The most important toroidal mode 
propagates in the ion diamagnetic drift direction (and will be referred to as the ion toroidal 
mode). This mode is shown to be unstable whenever a parameter h, 

qbpi  A=- 
&€, 

exceeds a critical value, h,, where 

(2.3.30) 

(2.3.31) 

This can never be satisfied if vi < 2 and therefore the  toroidal^ ion mode is stable for all 
wavelengths in this case. For values of qj > 2 the modes with wavelength short enough 
such that A A, will be unstable. There can be significant transport from this ion toroidal 
mode and in the fluid limit 

A >> 1 (2.3.32) 

the following thermal diffusivity is given: 

(2.3.33) 

The second toroidal mode propagates in the electron diamagnetic direction and is 
therefore referred to as the electron toroidal mode. This is found to be marginally stable in 
the absence of kinetic effects. Inclusion of a trapped-electron response can drive this mode 
unstable, though it is less important for transport than the ion mode and no expression for 
xi is given. Trapped electrons can have a major influence on the stability of this mode for 
tight aspect ratio ( E  2 0.3) and low collisionality U,, 5 1. 

The two modes described so far are peculiar to toroidal geometry and there is no 
analogue for them in a slab geometry. The third mode which is found does have a slab-like 
analogue and is therefore termed the slab mode. This is considered in the long-wavelength 
limit, with the ordering kepi (eh i z  (i.e. shorter wavelengths than were allowed for the 
toroidal calculation). The growth rate is derived far above threshold allowing the following 
mixing-length estimate of the thermal diffusivity to be made: 

(2.3.34) 

(2.3.35) 
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where the upper bound has been used to estimate ks in calculating xi, and that the density 
profile should be sufficiently flat 
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(2.3.36) 

Nordman et a1 (1990) adopt a fluid approach (claimed to be in close agreement with 
kinetic theory) to analyse the qi mode, taking into account non-adiabatic trapped electron 
dynamics. The resulting quartic dispersion relation has two branches which can be unstable 
simultaneously (as discussed earlier)-a collisionless trapped-electron mode and a toroidal 
vi mode enhanced by happed-electron dynamics (see figure 2). A modified saturation 
level is derived by balancing the linear growth (- ySn) against the convective nonlinearity 
(- wE.VGn, where W E  is the E x B drift) leading to 

e 4  Y 1 
re @,e k X L '  
- =_- 

Using this in a quasilinear calculation of the ion heat flux then yields 

(2.3.37) 

(2.3.38) 

where fl is the trapped particle fraction and Ai is a function of the mode frequency w, and 
growth rate y given in (16) of Nordman et al (1990). Determination of y and w, from the 
dispersion relation then yields an ion thermal diffusivity which compares well with their full 
numerical simulation. It is interesting to note that predicted radial profiles of xi and x .  for 
a typical JET shot rise towards the plasma edge out to ria - 0.9 in qualitative agreement 
with experimental trends. Over the outer 10% of the plasma, however, both xi and xc fall 
sharply towards zero in contradiction with experimental measurements. ,Another interesting 
feature of this theory is the heat pinch (given by the term in curly brackets of (2.3.38)) 
which is proportional to the density gradient. A later work (Weiland and Nordman 1991) 
based on the same model applied near the tokamak edge (where E ,  << 1) produces similar 
x profiles. Other features of this c,, (< 1 limit are: 
(1) stabilization of the most dangerous mode (accompanied by a corresponding decrease in 

x) when a power threshold is exceeded (this is interpreted as a possible L-H transition 
mechanism) and 

Finally we discuss the work of Kim et al (1991) who use neoclassical fluid equations. 
(2) stabilization of the most dangerous mode at tight aspect ratio. 

The frequency ordering that they impose (i.e. w - 0,; << wbi) leads to the restriction 

(2.3.39) 

The ion collisionality, u,j, is limited to u.i << C3l2 because of the restriction that the static 
neoclassical viscous damping frequency 

(2.3.40) 

satisfies pi << o b i .  The fluid approach requires that qi must be far above threshold; an 
upper bound on xi is given as 

2 

xi < 2.3pip;$(1 + v i )  (2.3.41) 

i.e. they find that the transport is enhanced above neoclassical by a factor of the order 
(1 +vi) .  
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2.4. Trapped-ion modes 

We first discuss the threshold conditions for the onset of these modes. The stability of the 
ITG family of instabilities including trapped-ion modes, has been investigated by Garbet er 
a1 (1992) who derive a dispersion relation which describes three modes. Two of these are 
associated with the circulating particles and correspond to the vi mode and an interchange- 
type mode; the third is a trapped-ion mode. The dispersion relation for this mode is solved 
numerically in the collisionless limit and within the framework of the ballooning formalism. 
Curves of marginal stability are then drawn in the L,-Lri plane. A sketch of their results 
for the trapped-ion modes is illustrated in figure ' 3  for two values of the toroidal mode 
number, n, for a typical JET shot (i.e. qo = 1.5, Te = T, = 1750 eV, BO = 2.75 T 
and dq/d@ = 0.7 Wb-'). For low positive vi they observe that there exists a critical vi, 
(e.g. vie = $ for n = 30 or vic = 1 for n = 150), below which the trapped ion mode is 
stable. For higher vi they observe that the stability criterion becomes a threshold on the 
ion temperature length scale, Lr; ,  rather than on vi. This corresponds to LTi/R = 0.17 
for n = 30 and Lri/R = 0.1 for n = 150. This plot has similar characteristics to the 
conventional vi mode and thus comparisons with this trapped-ion mode are useful. Garbet 
et a1 calculate the critical Lri/R for the vi mode of the circulating particles using the same 
parameters as were used for the trapped-ion mode. They find a value of (LTi/R)c - 0.01 
and conclude that the trapped-ion mode is more important in tokamaks than the vi mode 
(this critical temperature gradient is very much below those which were described in section 
2.3). The critical value of the temperature length scale, below which trapped-ion modes are 
unstable, is dependent upon the toroidal mode number, n, with lower values of n having 
higher thresholds. 

- n = 150 ._._. n =  30 

" O  unstable I 1 
-0.5 rLTm unstable : 

-1 

Figure 3. Marginal-stability plots for the trapped-ion mode of Garbet 
e ta l  (1992). 

The threshold for instability to the trapped-ion modes has also been calculated for the 
collisionless mode by Dominguez (1990). As well as the collisionless assumption, the 
calculation is performed in the limit of large aspect ratio, requiring 

u * < 1  € < < I .  (2.4.1) 
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The form of the threshold for instability is 

G < f (Ve)  (2.4.2) 
where f (qe) is a complicated function which can be found in the reference. By controlling 
qe Dominguez claims that it is possible to move the threshold and help stabilize the trapped- 
ion mode. 

We now turn to the various trapped-ion transport models that have been proposed 
recently. We begin with the paper of Diamond and Biglari (1990) in which earlier work 
on dissipative trapped-ion convective cell turbulence driven by electron collisions (Cohen 
et al 1976) is reconsidered. In the work of Cohen et al,  the two-dimensional E x B 
advective nonlinearity was dropped and a one-dimensional nonlinear 'shock' term retained. 
This model led to a diffusion coefficient, D, which scaled as D - T2'I2, corresponding 
to very large anomalous Innsport, particularly at high temperatures. However, when the 
temperature is high the E x E term is the dominant nonlinearity and the calculation of 
Cohen et al becomes invalid. Such a two-dimensional mechanism is better able to transfer 
the unstable fluctuation energy to where it can be dissipated than the one-dimensional version 
and leads to a steady state with less transport. The condition that the E x E nonlinearity 
dominates over the shock nonlinearity is 

(2.4.3) 

where equal temperatures of the ions and electrons have been assumed. Diamond and 
Biglari then find that 

(2.4.4) 
. .  

Expressions for the electron thermal (xe) and particle (D) diffusivities are also given in 
terms of x, as 

xe $D xi. (2.4.5) 

The trapped-ion temperature-gradient-driven mode is considered using a two-point 
renormalized (clump) theory by Biglari et al (1988). In clump theory the fact that the 
nonlinear interaction of modes can produce fluctuations which are not in phase with the 
potential (i.e. incoherent fluctuations) is considered. The word 'clump' describes the 
phase-space granulation resulting from turbulent mixing (i.e. 'clumps' of plasma are formed 
which, to a certain extent, behave as a single large particle). The mode, which is shown 
to propagate in the ion drift direction, is driven by unfavourable magnetic curvature, unlike 
the 'conventional' slab qi mode which is driven by a sound wave and propagates in the 
electron drift direction. Whilst the ions are treated using clump theory, the electrons are 
assumed to be sufficiently collisional that electron clumps are not formed. This imposes 
the constraint on the electron collisionality, v,,, that 

(2.4.6) 

where vic is the critical qi for the onset of the instability and is given by 

(2.4.7) 

with ,?? the ratio of the ion kinetic energy to the ion thermal energy. Other frequency 
orderings impose the following constraints: 

- 1  
qic = (; -,E)- 

(2E r ) '4. 
V*i. V,, << 1 o b i .  Uti >> W*i =+ ksps < o*i > o d i  =+ <* <( 1 . (2.4.8) 

4 
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These imply that the results are valid for long-wavelength modes in low collisionality 
plasmas for which the density profile is not too flat. The following expressions for the ion 
particle (ri) and thermal (Qi) fluxes are given: 

where I w/wdi I is constrained to lie in the range 

;> - > I  I3 

(2.4.9) 

(2.4.10) 

The lower bound is necessary to achieve nonlinear saturation, and the upper bound to have 
nonlinear instability. If we use the lower value then,we obtain the following expression for 
F: 

(2.4.11) 

The work of Biglari et a1 (1989), which we considered earlier in relation to the toroidal 
qi mode, also calculates transport due to the trapped ions. Trapped-ion pressure-gadient- 
driven modes are considered both in a collisionless model and a model where a pitch-angle 
scattering collision operator is included. The frequencies are ordered according to 

Wbi, wti >> >I 0 1 Lwdi .  ueff,i. 

These imply that the plasma should be of low collisionality: 

(2.4.12) 

v*i << 1 (2.4.13) 

the density profile should not be too flat: 

E ,  << 4 (2.4.14) 

and the modes are of long wavelength: 

For the collisionless case, a criterion for instability is derived 

(2.4.16) 

which, when satisfied, leads to the following mixing-length result for the ion thermal 
diffusivity: 

(2.4.17) 

The effects of perturbatively including ion collisions via a pitch-angle scattering operator 
are then studied. The dissipative trapped-ion mode was found to be stabilized by ion 
collisions when qi = 0 in an early work by Kadomtsev and Pogutse (1971). Here, the finite 
qj regime is explored and it is found that when qi exceeds a critical value (qj, = 4) ion 
collisions actually have a destabilizing influence. Thus when 

(2.4.18) 
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the mode is unstable and the thermal diffusivity corresponds to 
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(2.4.19) 

This value for the thermal diffusivity is rather high and has a large unfavourable temperature 
scaling; the instability is therefore expected to fix the plasma profiles at a level corresponding 
to marginal stability. This value for F is also somewhat larger than that obtained by 
Diamond and Biglari (1990) for the dissipative trapped-ion mode. In that case ili = 0 and 
the electron collisions were,the main driving mechanism, whereas here qj is assumed to 
exceed the threshold (of !) and the ion collisions also become destabilizing. 

A similar result to (2.4.17) is obtained by Biglari and Diamond (1991) when the mode 
is analysed with a fluid frequency ordering (Obi >> 101 >> O& > v&. Assuming equal ion 
and electron temperatures they derive a fluid model describing the evolution of the density 
and temperature fluctuations. The saturated levels of density and temperature fluctuations 
are calculated from which an ion heat diffusivity is derived, corresponding to 

Expressions for the particle ,and electron heat diffusion are also given: 

(2.4.20) 

(2.4.21) 

Xu and Rosenbluth (1990) have considered the stability criterion for the trapped-ion 
mode and its relation to certain other instabilities. For low-frequency, long-wavelength 
modes a general analytic dispersion relation is derived which contains three types of 
instability-electrostatic trapped-ion modes (i.e. trapped-ion modes that are electrostatic 
in nature), magnetic trapped-ion modes (i.e. trapped-ion modes which have no electrostatic 
contribution) and MHD ballooning instabilities. The dispersion relation is obtained using a 
variational approach constructed from gyrokinetic equations. It is found that the couplings 
between the modes are weak (except for the case of the ballooning mode, where it is found 
that the trapped particles are stabilizing). By considering different mode frequency orderings 
they separate out the trapped-ion modes and evaluate thermal diffusivities and stability 
criteria for different collisionality regimes. The effects of collisions are incorporated into 
the model via a pitch-angle scattering operator but the effects of trapped electrons are not 
considered. We concentrate here on the results which they obtain for the trapped-ion modes, 
beginning with the electrostatic mode which is considered in the region 
when ion collisions are destabilizing. Thermal diffusivities for two collisionality regimes- 
‘collisionless’ and ‘collisional’ are derived. For the collisionless case, the ion collision 
frequency must be less than the drift frequency: 

< qj < 

(2.4.22) 

where 

and fl is the ratio of thermal to magnetic energy. The frequency ordering which is imposed 
gives the following constraints on the mode wavelength: 

(2.4.24) 



Survey of theories of anomalous transpoe 737 

It is shown that a mode driven by ion pressure gradient is unstable for 01 below a critical 
value, a,, where 

and the thermal diffusivity in this situation corresponds to 

(2.4.25) 

(2.4.26) 

where 

h(0) = se - 01 sin0 (2.4.27) 

and 0 is the poloidal angle. 
For the collisional case the ion collision frequency exceeds the drift frequency: 

(2.4.28) 

and then the frequency ordering which is imposed leads to the following bound on the mode 
wavelength: 

The corresponding thermal diffusivity is given by 

(2.4.29) 

(2.4.30) 

Although there are similarities, the E dependence, for example, is quite different from that 
in the collisional result of Biglari et al (1989) (see (2.4.19)). 

Finally, we turn to the purely magnetic mode where the frequency ordering requires 

c , , P v * i r l f l  
4 

(2.4.31) 

The condition that the mode be unstable can be expressed as a condition on the collisionality: 

ksps >> f i  

and the resulting thermal diffusivity can be calculated from 

(2.4.32) 

(2.4.33) 

2.5. Conclusions 

There is a strong belief that toroidal Vi"i modes play a role in tokamak transport and 
much effort has been devoted to refining the onset conditions and consequent transport 
to improve agreement with experimental results on xi. Although the scalings for these 
theoretical gyro-Bohm expressions for xi have improved through the geometric factors 
appearing in the functions F ,  problems remain. Recent comparisons with JET experimental 
data made by Connor etal(l993) indicate that all the above ITG turbulence-driven transport 
theories tend to have a common problem-a failure to reproduce the rise in the ion thermal 
diffusivity observed towards the tokamak edge. On the contrary, as a consequence of the 
strong temperature dependence associated with their gyro-Bohm scaling all theories here 
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predict a fall in xi towards the plasma edge. Current developments in theory attempt to 
address this problem in different ways. Hua er al (1992) explain the radial profile by 
retaining threshold effects whereas the majority of the theories quoted above are strictly 
valid far above threshold. Hua et al postulate that in the core of the plasma the density 
and temperature are held close to marginally stable profiles and little transport results in 
this region (typically much less than predicted by the above models). Towards the edge, 
boundary conditions (such as the density and temperature tending towards zero) force the 
plasma profiles away from marginal stability and so the diffusivity rises to the values typical 
of those quoted above. Beklemishev and Horton (1992) claim that one should weight the 
heat diffusivity by a 'density of states' factor which reflects how closely the mode rational 
surfaces are packed. This leads to an enhancement of the thermal diffusivity at the tokamak 
edge which may explain the observed increase in xi in this region. Finally Romanelli and 
Zonca (1993) examine the consequences of toroidal coupling on the radial structure of ITG 
modes, finding a more general class of instability than the 'ballooning' type modes which 
we have been discussing. These new,modes are similar to those discussed by Connor et a1 
(1993) in that they have a much greater radial extent and may therefore be more important 
for transport. No detailed transport calculations have been made but qualitative comments 
can be made from the radial structure which Romanelli and Zonca derive. In particular 
for low shear values (s < 1) towards the plasma core, the toroidal coupling of the Fourier 
modes is very weak (- e-'/') and the radial mode width, Ax,  is then governed by the width 
of the individual Fourier modes. Thus for s < pJLn,  as discussed by Hong and Horton 
(1990). Ax - L. and the transport is Bohm-like (see (2.3.20)). For higher shear values in 
the range ps /L , ,  5 s  < E,,, Ax - ps and the conventional gyro-Bohm scaling observed in 
the majority of the theories discussed in this section is obtained. For s 2 1 Romanelii and 
Zonca (1993) demonstrate strong toroidal coupling of the individual Fourier modes which 
again gives radially extended structures with Ax - a/s'/*, where a denotes an equilibrium 
scale length. Such large structures would be expected to give high Bohm-lie transport 
and may, therefore, provide an interpretation of the observed increase in xi at the tokamak 
plasma edge. 

3. Electron transport due to drift-wave turbulence 

3.1. Overview 

Electrostatic drift-wave turbulence can be excited by various mechanisms. The basic drift 
wave has o - w,, and kAp, - O(1). Destabilizing mechanisms are provided by collisions, 
Landau resonances and trapped particle effects, which must offset shear damping for 
instability. Shorter-wavelength electromagnetic fluctuations with krc/o, 5 1 can be excited 
by the ve (or electron-temperature gradient) mode. The presence of such electromagnetic 
drift-wave turbulent spectra can produce stochastic transport of test particles, particularly 
trapped ones, which is largely independent of the origin of the turbulence-this is discussed 
in section 3.2. 

In section 3.3 we consider electrostatic electron drift-wave turbulence and transport in 
more detail. We concentrate on placing the many contributions on this topic in context, 
emphasizing developments over the last fifteen years. As in the case of the VT; mode, 
the simplest description of the electron drift wave is in a slab geometry, where it is found 
that to overcome the damping effect of the magnetic shear it is necessary to introduce a 
nonlinear theory; such a mode is discussed in section 3.3.1. We then consider the effects 
of introducing toroidal geometry in 3.3.2; as is well known, toroidicity tends to reduce the 
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shear damping and thus drive the mode more unstable. Toroidal geometry also introduces 
trapped particles and in 3.3.3 we consider the instabilities and transport that are induced by 
a trapped electron population. These modes have been studied extensively in the literature 
in a variety of regimes, using different mode structures and saturation mechanisms and we 
categorize the calculations accordinx to those. We then consider the effects of inverted 
density profiles and finally a short-wavelength trapped-electron mode. Section 3:4 discusses 
the electromagnetic drift wave, the drift micro-tearing modes and the qe mode in both slab 
and toroidal geometry. 

All the transport coefficients in these subsections are of the gyroBohm-type, involving 
ps or c/wPe (or both) as microscopic lengths as discussed in section 3.5 

3.2. General electromagnetic fluctuations 

A turbulent plasma in which the electromagnetic fluctuations are sufficiently large can 
produce stochastic transport of particles. Three papers by Horton (1985), Parail and 
Yushmanov (1985) and Horton eta1 (1987) derive the requirements for stochastic motion and 
the implications such a motion has for transport levels. They numerically solve the equations 
of motion of the particles under the influence of a model spectrum of electromagnetic 
fluctuations and calculate a diffusion coefficient, D. The source of the electromagnetic 
fluctuations is not specified although it is assumed that they could originate from drift waves. 
The dependence of D on the fluctuation spectrum parameters (e.g. fluctuation amplitude, 
power-law index of the wavenumber spectrum, mean phase velocity of the fluctuations, etc.) 
is then studied extensively. It is found that D is relatively insensitive to these properties of 
the fluctuation spectrum. 

In a random-walk estimate of the diffusion coefficient for a highly turbulent plasma of 
the type discussed above, the relevant decorrelation frequency is the circulation (or E x B 
trapping) frequency, a ~ ,  defined as 

(3.2.1) 

where rpk is a Fourier component of the potential corresponding to wavenumber k and the 
characteristic step length is k;'. Because trapped particles are localized along a magnetic 
field-line they do not experience the whole variation of the perturbation along B. As a 
result the fluctuations influence the trapped-particle orbits more than the passing-particle 
orbits (which will tend to average out the effects of the fluctuations). Thus the dominant 
contribution to the transport is from the trapped electrons so that 

(3.2.2) 

In his analysis, Horton (1985) showed that a condition for such stochastic motion is 

Q E  - AOI 

where AOI is the dispersion of the distribution of frequencies of the driving instability. For 
electron drift waves 

CS AOJ - = kLps -  
L" 

and the wavelength is estimated by 

(3.2.3) 

k i p ,  - I .  (3.2.4) 
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Thus the electron heat diffusivity is given by 
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(3.2.5) 

Although there may be some modification to this through the details of the fluctuation 
spectrum, the numerical study described above indicates that their effects will be small. 

The regime considered by Parail and Yushmanov (1985) corresponds to shorter- 
wavelength modes, with 

k l -   pel^. (3.2.6) 
where c is the speed of light and ape is the plasma frequency (the ratio of which corresponds 
to the skin depth). They consider that stochasticity occurs when 

Q E  @be (3.2.7) 

where qe is the bounce frequency of trapped electrons. This leads to the test-particle 
diffusivity 

(3.2.8) 

If both parts of the fluctuation spectrum are present with sufficient amplitude to produce 
stochastic diffusion a total diffusivity can be written as 

(3.2.9) 

where &(a) represents a slowly varying function of the parameter set (a} which defines the 
fluctuation spectrum. The &,(a) can be treated as adjustable constants of order unity when 
comparing this formula with experiment. It should be noted thar although the diffusion 
coefficient was shown to be approximately independent of the fluctuation parameters, it 
was also shown that there does exist a significant variation with the magnetic shear. Thus, 
the parameters & may only be treated as constant at constant shear. Kesner (1989) has 
analysed the shear variation of the bm(ci) obtaining the following fit: 

(3.2.10) 
where SI is the local shear on the outside of the torus (i.e. at 0 = 0). 

The work described so far considers a collisionless plasma and assumes that the trapped- 
electron diffusion is dominant over that of the passing electrons. If the collisions of 
electrons with ions are included then trapped electrons are converted to passing at a rate 
which is proportional to the effective collision frequency of the electrons. This implies that 
collisions may influence the diffusion coefficient as discussed by Kim et nl (1990), where the 
collisional modifications of the Horton etal (1987) result are calculated. A similar approach 
to that of Horton et a1 (1987) is used to derive (numerically) an approximately linear 
dependence of the diffusion coefficient with the collisionality. Thus Kim et a[ generalize 
the work of Horton et a1 to 

&(a) --f (0.05 i- 0.65e-3'sL')bm(ci) 

(3.2.1 1) 

The new final term is of particular importance at the edge where the collisionality can be 
high. 

Using quasilinear theory Parail and Pogutse (1981) derive an upper bound to the electron 
thermal diffusivity caused by electromagnetic turbulence which is assumed to exist on 
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a length scale of the collisionless skin depth (c/w,). Two expressions for the thermal 
diffusivity are given for odd and even modes respectively (where ‘odd’ and ‘even’ refer 
to the parity of the electrostatic potential about a resonant surface). Both types of mode 
are assumed to have the skin depth as their length scale and the difference in the resulting 
diffusivities is due to the different time steps that are attributed to each. This time step, At, 
is derived by assuming that, in a collisionless plasma, the electrons interact with a wave 
according to the Landau mechanism, i.e. A f  - l/kjum.. For the odd modes, the radial 
extent of the mode is taken to be - Ilks, so that kll - s / q R  (where s is the shear, q 
the safety factor and R the major radius), thus leading to an Ohkawa-type scaling for the 
electron thermal diffusivity: 

(3.2.12) 

For even modes the average distance that an electron deviates from the mode rational surface 
is small and coupling to sidebands needs to be taken into account. This coupling is of order 
E’ so that the relevant timescale for this case is - (r/R)’(ufi,/qR) (where r is the minor 
radius) leading to 

(3.2.13) 

If both types of mode exist, then the diffusivity due to the odd modes will usually dominate 
over that of the even modes. However, Parail and Pogutse (1981) claim that the even 
modes will, as a rule. be excited before the odd modes and thus ,y>) will be the relevant 
expression. 

Finally, in this subsection we consider the work of Bang and Mahajan (1988). For 
fluctuations with w < kllufi. (where w is the mode frequency) the relevant timescale is - l/klluhe, thus leading to the result of Parail and Pogutse (1981) described above. Zhang 
and Mahajan (1988) argue that for this ordering it is not possible for the electromagnetic 
modes to grow in a collisionless plasma, leading them to propose w > klluh. as the relevant 
ordering. Then the mode frequency w provides the timescale for the turbulence. The precise 
form of the mode which might be responsible for the driving of turbulence is not addressed, 
but it is assumed that w scales like &, where 

(3.2.14) 

with 01 and 5 constants, i.e. a linear combination of the diamagnetic drift frequency due 
to both the temperature and density gradients with the perpendicular wavelength being - c/wp.  Little i s  said about the constants 01 and which would be determined once a 
specific driving mechanism for the electromagnetic turbulence is given; in the absence of 
such a driving mechanism they must be assumed to be parameters of the model fixed by 
comparison with experiment. The length scale is taken to be the collisionless skin depth, 
thus leading to the following form for the diffusivity: 

(3.2.15) 

3.3. Electrostatic drifr-wave transport 

3.3.1. Circulating electron drift wave in a slab or cylinder. The collisionless electron drift 
wave gives rise to a mode (the ‘universal mode’) which, in a slab geometry, is always 
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unstable in the absence of (magnetic) shear. In such a case, the radial eigenmode equation 
possesses a potential well around the maximum density gradient. With the introduction 
of shear the depth of this well is reduced until, for sufficiently large shear, the potential 
well becomes a potential hill. A localized mode is no longer possible and it was thought 
that the universal mode could not exist in such a sheared plasma. However, Pearlstein 
and Berk (1969) pointed out that a mode whose boundary conditions (far from the mode 
rational surface) are those of an outgoing wave (i.e. a wave which takes energy from the 
mode and dissipates it at large distances from the mode rational surface through some 
mechanism, e.g. ion Landau damping) is an acceptable solution. Thus, in their calculation, 
there is a competition between the rate of energy radiated by the mode (which increases 
with shear-the ‘shear damping’) and the driving mechanism of the instability. For low 
values of shear (but still typical of tokamak plasmas) the driving mechanism ‘wins’ and the 
mode is unstable. Higher shear stabilizes the mode. 

An approximation made in the work of Pearlstein and Berk is to expand the plasma 
dispersion function for (o/kiluth,)2 << 1, thus giving rise to an adiabatic electron response. 
Later work by Ross and Mahajan (1978) and Bang et al (1978) solved the dispersion 
relation numerically without this approximation and found that shear has a greater stabilizing 
influence on the ‘universal mode’ than predicted by the perturbation approach of Pearlstein 
and Berk. In fact, they found that typical tokamak plasmas had sufficient shear to stabilize 
the mode. The problem with the Pearlstein-Berk calculation is the breakdown of their 
approximation near kl, = 0; the solution in that region has a strong stabilizing influence on 
the mode. 

So far the description of the ‘universal mode’ has been limited to that of linear theory. 
Hirshman and Molvig (1979) retain the nonlinear effects arising from the E x B drift to 
study the effects of electrostatic turbulence on the mode stability. They argue that the effect 
of stochastic diffusion of the electron orbits due to this turbulence will generate a finite value 
for kli (i.e. effectively removing the long wavelength, stabilizing part of the spectrum). Thus 
it is expected that the turbulence will destabilize the mode relative to the linear predictions. 
A ‘nonlinear’ dispersion relation is derived which demonstrates explicitly the destabilizing 
nature of the turbulence, indicating that quite low levels of turbulence (typically below those 
expected to exist in tokamaks) are sufficient to drive the mode unstable. In the presence 
of turbulent fluctuations shear retains its ability to stabilize the mode and there exists a 
competition between the driving of the turbulence and damping from the shear, with the 
mode being stable at sufficiently high shear. Solving the dispersion relation at marginal 
stability determines the diffusion coefficient, D: 
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with 

APB = (2)’ (2) 

(3.3.1) 

(3.3.2) 

Diamond and Rosenbluth (1981) reconsider this problem and find that a low level 
of turbulence is actually stabilizing. However, at higher levels, more typical of tokamak 
plasmas, the turbulence is destabilizing in qualitative agreement with Hirshman and Molvig 
(1979). 

3.3.2. Slab-like driji wave in a tokamk. In a slab or cylinder there is a competition between 
the electron drivf (due to Landau resonance in a collisionless regime and collisions at higher 
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collision frequency) and shear damping and that, in fact, the mode is linearly stable. In a 
tokamak, passing particles continue to provide Landau or collisional drive, as appropriate, 
but shear damping can be removed by toroidal effects (Taylor 1977). Thus one can use 
D - y l k :  estimates of the diffusion where the only contribution to y is the electron drive. 
Waltz et al (1987) present ylk: estimates of the transport due to drift waves. Taking 
kip, - 1 they give the followiog result for the collisionless diffusion coefficient, which is 
applicable in the region u,/w. < 1 

This clearly differs from the result of Hirshman and Molvig (1979) quoted above. Waltz et 
al also give an expression which is valid in the collisional regime: 

(3.3.4) 

for v J w , ~  > 1. Here, U, is the electron collision frequency and wre = u m e / ( R q )  is the 
electron transit frequency. 

3.3.3. Trapped-electron induced modes. In lower collisionality tokamaks trapped-electron 
effects become important. There then exists a class of drift-type instabilities, the trapped- 
electron modes, which are more important than the slab-like circulating electron mode 
which we have considered above. This subsection reviews the extensive literature on the 
transport that might be expected to result from such modes. There are numerous regimes, 
mechanisms, mode structures and approaches which have been developed and the theories 
have been categorized accordingly. 

(a) Marginal-stabiliry approach. Manheimer and Antonsen (1979) use a marginal-stability 
approach to investigate the effect of the dissipative trapped-electron drift instability a n  
temperature profiles. The marginal stability approach assumes that if any part of the plasina 
becomes unstable then an anomalously high electron transport switches on to return that p p  
of the plasma profile to marginal stability. The model which they use, which does inclqde 
the effects of shear damping, is greatly simplified (e.g. the density profile is fixed) but be 
profiles which they obtain are in reasonable agreement with experiment. In this work p e  
stability is determined through numerical solution of the dispersion relation. In an earljer 
(simplified) calculation (Manheimer et a1 1976) an analytic stability criterion was derived. 

i 

: Taking the large aspect ratio limit and assuming q, = 1 it is: i 

(b) Profile consistency approach. This method for deriving the cross-field transport expliits 
the fact that the temperature and density profiles in a tokamak are generated by the transpprt 
so that a given experimental profile determines the radial dependence of xe in terms ;of 
the heating source. The overall magnitude of the transport is derived by considering ye 
'confinement zone' (which is usually taken to be between the q = 1 and q = 2 surface$). 
This avoids detailed discussion of processes in other plasma zones (where the transpbrt 
is assumed to be very rapid due to, for example, sawteeth at the centre or (possibly) 
tearing modes at the edge; these processes are partly responsible for the overall shape of &e 
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expenmental profile (Waltz ern1 1986)). For example, Tang (1986) models the experimental 
temperature profde through the equation 
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(3.3.5) 

with c 1 ~  chosen to satisfy the empirical relation 

3 ~ ~ 1 2  qo + 0.5 (3.3.6) 

where q,, represents the edge safety factor. Using &e parallel component of Ohm's law 
with the resistivity - T312 gives 

(3.3.7) 

In order to derive the electron thermal diffusivity (for an ohmic tokamak), the ohmic 
heating is balanced against the transport; thus 

(3.3.8) 

so that 

xe = x d W .  (3.3.9) 

All the radial dependence has been absorbed into F(r )  which is given by 

(3.3.10) F(r)  = 

and x d  is to be determined by considering transport due to a particular instability in the 
confinement zone. Tang postulates that the most important instability that exists between 
the q = 1 and q = 2 surfaces is the trapped-electron mode. This leads to an expression for 
xe in this region given by 

exp[(;)(q, + 0.5)(r/a)*] - exp[-($(q, + 0.5)(r /a)z~ 
( r l d Z ( n e ( r ) / ~ d O ) )  

(3.3.1 1) 

The parameter E represents the transition from the dissipative to the collisionless mode and 
should be fixed to be of the order E - 0.1-0.2. Matching volume averages of the entropy 
production between the q = 1 and q = 2 surfaces corresponding to the two forms for ,ye 
leads to 

(3.3.12) 

which, together with (3.3.9) and (3.3.10), then gives an expression for the electron thermal 
diffusivity in an ohmically heated plasma. Here the density profile has been written as 

(3.3.13) 

BT is the toroidal field in T, temperature is measured in keV, the major, minor radii ( R ,  a)  
are in m, and the resulting expression for xe is in units of m's-'. 

Tang also derives the transport that might be expected to exist in a tokamak with 
auxiliary heating, assuming that the density and temperature profiles of the electrons and 
ions are the same and, also, the collisionality is restricted to U, e 0.1. le is then given by 

xe = x e h f i k )  (3.3.14) 

n(r)/n(O) = ( I  - (r/a)2)"n. 
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where the radial dependence is in Fh(r): 

where h(r )  represents the total power deposition profile. The magnitude, ,yeh is 

(3.3.15) 

(3.3.16) 

where PT is the total power (in MW) and all other parameters (and units) are as defined 
above. 

(c) Strong turbulence estimates. The y j k :  models employ the argument that at saturation 
the growth of the mode (usually taken to be the linear growth rate) will be balanced by 
turbulent diffusion (i.e. k:D). The value of k l  is to some extent a free parameter, but 
experiment seems to favour it to be in the region kip, - 0.3. Dominguez and Waltz (1987) 
use these arguments to derive the electron and ion thermal diffusities that would be caused by 
ion temperature gradient (ITG) modes, circulating-electron drift modes (both collisional and 
collisionless) and the trapped-electron modes (collisional and collisionless). Their simplified 
treatment of the electron modes has a switch from the collisional to the collisionless mode as 
a collisionality threshold is crossed. (In reality an intermediate collisionality might involve 
aspects of  both modes.) The expressions they give are, for the trapped-electron mode 
(collisionless or dissipative): 

(3.3.17) 

for the circulating electron mode (collisionless or dissipative), the result of equations (3.3.3) 
and (3.3.4): 

and for the ITG mode a result similar to (2.3.29): 
~ U*, 

Di = ~ ( 2 C ' 7 l i 4 ' / ~ .  
k ,  

(3.3.18) 

(3.3.19) 

Here we have defined the effective collision frequency, v,e by U& = U ~ / E  and the suggested 
choice of k l  is kip, = 0.3. These transport coefficients are then combined to give total 
thermal diffusivities of 

(3.3.20) 

(3.3.21) 
xe = $(cte& + c c e h ( 1  + E i f i & c n q i )  

xi = $ [ C i h i f i m  + t i e ( C t 3 t e  + C c e b s e ) ~  

f i t h  = (1 + e x ~ [ - 6 ( ~ i  - WIII-' 
where the threshold factor for the ion-temperature gradient-driven mode, fib is given by 

(3.3.22) 

and qih is a measure of the threshold for the vi mode (see section 2.3). 
This expression is interesting because it takes into account the effect of the ion turbulence 

on the electron heat flow through the coefficient &i (and the effect of the electron turbulence 
on ion heat flow through the coefficient ti,). The values for the coefficients ate to be chosen 
by fitting to the experimental data. The only constraints on the 'mixing' coefficients given 
are: 

1 < & < 3  O < E i , < I .  (3.3.23) 
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Similar expressions to (3.3.17) are derived by Perkins~(l984) using mixing-length estimates 
for the thermal diffusivities. 

An alternative y /  k i  estimate of the electron thermal transport due to the trapped-electron 
drift mode is given by Romanelli et al (1986): 
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~~ 

(3.3.24) 

where the factor on the right has been included to allow a smooth transition from a 
collisionless region to collisional. In the dissipative limit this expression yields a factor 
?le times the result of (3.3.17). 

(d) Weak-turbulence estimate in 'slab' geometry. Gang et a1 (1991) present a weak- 
turbulence calculation of the transport that is expected from the trapped-electron-driven 
drift wave. Such a treatment leads to fluctuation levels (and hence transport) which are 
lower than the predictions of the strong turbulence or mixing-length theories. The geometry 
is that of the sheared slab and two collisionality regimes are considered collisionless 

(3.3.25) w > ode > Veff 

and dissipative 

Veff > W > ode  (3.3.26) 

where u,rf = veil€. These frequencies are constrained to satisfy 

Veff, Ode, 0 s %e (3.3.27) 

where me is the trapped-electron bounce frequency. A kinetic treatment is employed 
with the ions described by the nonlinear gyrokinetic equation, the trapped electrons by the 
nonlinear bounce-averaged drift-kinetic equation and the untrapped electrons assumed to be 
adiabatic; ion and electron temperature gradients are neglected. The fluctuation spectrum 
is derived by balancing the linear growth rate, the shear damping and the nonlinear energy 
transfer. From the fluctuation level and spectrum it is possible to derive the following 
transport coefficients: 

(3.3.28) 

These expressions are valid for both the collisionless and dissipative cases, though the 
definitions of some of the variables are different in the two collisionality regimes, as outlined 
below. Thus 

A; = .&(L,JLJ'~'In s -ke (/E-) (3.3.29) 

where = keps.  The variable p is a measure of the linear electron drive and is given by 

collisionless 
dissipative. (3.3.30) 
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The parameter ki is the cut-off in the wavenumber spectrum due to shear damping. It is 
obtained by solving the equation which matches the linear electron drive of the mode to the 
shear damping (i.e. the nonlinear transfer rate is neglected): 

where 

I collisionless 
f ( i e )  = { dissipative. (3.3.32) 

The three functions involving this cut-off wavenumber are 
I ; - x + , x  2 7/2 collisionless 

F ( x )  = 
dissipative 

x - ~  - $ + ; x 3 ~ 2  

~ ~ ( ~ - l )  - $ + ZX3/2 3 

(1 /& [ ( I / %  - $) G(x) - $ F ( x ) ]  

collisionless 

dissipative 
(3.3.33) 

collisionless { ( l / i r ) [ 2 5 F ( x )  + 9xG(x)l  dissipative. 

G(x)  = 

H ( x )  = 

A similar theory is given by Rogister (1989) who finds the following form for xe: 
(3.3.34) 

where G is an unspecified function of (r* - 1). and r' > 1 is the condition for the onset 
of instability. However, this function G increases sufficiently fast with r* that the plasma 
tends to adopt 'marginal-stability' profiles corresponding to r* = 1. For s2L,/L, > 1,  r* 
is given by 

(3.3.35) 

where A is an adjustable numerical coefficient and W/LJ,S = 8.86. 1 0 ' 9 ~ T ~ / [ A ~ / 2 n L , ( 1  + 
Zen)]. (An expression for r* in the opposite limit is given in Rogister et a1 1988.) Here 
To is in keV and other parameters are in SI units. 

The difference between this result and that presented by Gang ef  al (1991) is partly due 
to the fact that Gang et a1 neglect the electron temperature gradient; also, they treat the 
trapped-electrons nonlinearly but the resulting effects are found to be small. 

(e) Toroidal mode structure. The nonlinear theory of electron drift waves in a toroidal 
geometry is considered by Similon and Diamond (1984). When toroidicity is taken into 
account there exists an extra branch of the drift wave absent in slab geometry (Chen and 
Cheng 1980). In the slab-like case the radial eigenfunction equation involves a potential 
hill and the eigenfunctions satisfy the Pearlstein-Berk boundiuy conditions. When toroidal 
effects are taken into account the calculation is performed in ballooning space and the 
corresponding potential hill becomes modified so that there exist local potential wells. These 
wells are able to confine a new mode-the so-called toroidal drift mode. Of course, the 
original slab-like mode still exists, though it will be modified slightly due to these local 
potential wells. 
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Similon and Diamond suggest that it is this toroidal branch of the drift modes which 
is important when considering transport and this is the branch which they discuss for a 
tokamak with circular, concentric flux surfaces. They consider a linear electron response 
which is taken to be of two parts+ adiabatic piece and a non-adiabatic piece which is 
modelled by an ‘is’ prescription representing trapped-electron drive. The ions are described 
by the nonlinear gyrokinetic equation. Calculation of the fluctuation levels and spectrum in 
an intermediate turbulence regime (corresponding to the turbulent decorrelation rate lying 
between the ion transit frequency and the linear frequency spectrum width) then leads to 
the following forms for the test-particle diffusion coefficients. For the untrapped electrons, 

(3.3.36) 

while for the trapped electrons, two collisionality regimes are considered. When w k  > 
veff > Ode: 

while for ves < ode: 

(3.3.37) 

(3.3.38) 

A weak-turbulence calculation of the transport due to the toroidal collisionless trapped- 
electron mode has been performed by Hahm and Tang (1991). They treat both the ions 
and the trapped-electrons nonlinearly (the circulating electrons are assumed to have a 
Boltzmann response). The trapped electrons are described by the bounce-averaged drift- 
kinetic equation and the ions by the gyrokinetic equation. Hahm and Tang argue that the 
relevant collisionality regime is the collisionless case, and they adopt the ordering: 

ai < w < W k  (3.3.39) 

where the condition o > o b i  allows the effects of trapped ions to be negleckd. The orbit- 
averaged precession drift frequency, O D ~ ,  is defined by W D ~  = o,,(c,,u’/u~,)G(s, K )  where 
the pitch angle K is related to the turning point of a trapped particle, 00, through K = sin&. 
For a high aspect ratio tokamak with concentric flux surfaces considered here, G(s,  K) is 
given by: 

%e > WDe > vefi 

G(S, K) = 2 . ! ? ( K ) / K ( K )  - 1 +4S(.!?(K)/K(K) f K 2  - 1) (3.3.40) 

where E ( K )  and K ( K )  are the complete elliptic integrals of the first and second kind. 
For the calculation of the fluctuation spectrum G(s,  K )  is replaced by its K average, 
G(s)  = 0.64sf0.57 (Tang 1990). Using weak-turbulence theory to calculate the fluctuation 
spectrum, the following, rather complicated, expressions for the transport coefficients are 
derived. The particle diffusion coefficient, D, is given by 
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the electron thermal diffusivity by 

and, finally, the ion thermal diffusivity by 

(3.3.42) 

(3.3.43) 

In these expressions 
k-2 M - - P,[I 2 + Z-'U + v ~ ) I .  (3.3.44) 

The wavenumber, kL is the solution to a rather complicated equation ((33) of Hahm and 
Tang 1991) but an approximate solution is 

(k)' N 3(1 + ve)Ge, (3.3.45) 

Ifl Clump theory. Terry and Diamond (1983) and Diamond er a1 (1983) have addressed the 
role of clumps and their effect on electron drift-wave stability. The authors find that they 
provide a significant destabilizing influence which can be described in terms of a nonlinear 
growth rate YNL, where 

YL 
U - C(k, w d l  YNL = 

with the linear growth rate and 

(3.3.46) 

C(k, wk) = 2fiA(kp5)- sk (z)1'2 @k 
(1 - 2) exp (-2) (3.3.47) 

6 3  

where A(kp,) = (k2p:)-'[1 - Jo(&k/ko)], Od = E,o,, and k i  is the mean-squared 
wavenumber. Sk is a 'shielding response' which Diamond etal (1983) give as Sk - i. The 
mode frequency, mk is a solution of the linear dispersion relation. Taking a mixing-length 
estimate for the turbulence then leads to the following thermal diffusivity: 

(3.3.48) 

The results of the linear theory due to Gang et al (1991) presented in part (d) of this 
subsection indicate 

where 
A 1 

and the value of G ,  depends on the collisionality regime: 

(3.3.49) 

(3.3.50) 

(3.3.51) 

(where we note that shear damping does not affect the toroidal mode). 



750 

(g) Transport stabilization Kaw (1982) considers the effects that anomalous thermal 
transport has on the stability of the collisionless trapped-electron mode. He finds that 
for sufficiently high values of xe the transport has a stabilizing influence on the mode. This 
suggests a model in which the trapped-electron mode is unstable and drives anomalous 
transport, which increases until it stabilizes the mode. Kaw illustrates the idea with a 
relatively simple model of the trapped-electron mode. He considers U,, i 1 and a fluid 
description of the ions, with the passing electrons taken to be Boltzmann. The response for 
the trapped electrons is calculated from a model equation which includes a term describing 
the effect of the thermal diffusivity on the distibution function. Charge neutrality then leads 
to a growth rate for the resulting mode of the form: 

J W Connor and H R Wilson 

(3.3.53) 

It can be seen that xc plays a similar role to that of the effective collision frequency in the 
dissipative trapped-electron mode. x. is then assumed to saturate at such a level that the 
mode will be stable, i.e. this growth of the mode is balanced by the shear damping. This 
then leads to the following expression for the electron thermal diffusivity: 

(3.3.54) 

where Kaw suggests that kip, - 1. The parameter (Y is an O(1) number describing an 
averaging over a velocity dishibution and can be treated as a fitting parameter. 

3.3.4. Inverted gradient projle effects. Inverted gradient profiles (i.e. negative qe, qi) 
have different effects on plasma stability depending on the mode; the circulating-electron 
drift mode is destabilized relative to the positive case whereas the trapped mode is 
stabilized (Tang etal 1975). One might expect the overall result to be stabilizing when the 
collisionality is low (and trapped electron effects are important) and destabilizing for high 
collisionality (when trapped-electron effects are negligible). Horton (1976) investigates this 
effect by constructing a dispersion relation which describes all three modes (i.e. collisional 
and collisionless circulating electron modes and the trapped-electron mode). He finds that 
for < 0 there is a gain in stability (over the positive vi,. case) when v., < 0.3 and 
a destabilization when v,, > 1. These linear results are then used to derive a quasilinear 
estimate of the transport that might be expected from a plasma in which all three instabilities 
exist. The results are the following, rather complicated, expressions for the particle flux: 

and for the electron thermal flux: 

In these expressions we have: 
2 

D d w  = -- pscs Ls m(kYps) 
L" L,  

(3.3.55) 

(3.3.56) 

(3.3.57) 

where 01 is a constant of the order of a few tenths and is to be fitted by comparison with 
experiment. The parameters S' represent the following sums: 

(3.3.58) 
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where the GL are integrals given in the reference, and A = 

expression to derive 

is suggested. 
Considering the dissipative mode ( u * ~  > 1) Bishop and Connor (1990) simplify Horton's 

(3.3.59) 

(Note that this expression differs from that which appears in the main text of Bishop and 
Connor (1990), where a typographical error has been introduced in transcribing the results 
derived in their appendix.) 

3.3.5. Short-wavelength trapped-electron mode. An analysis of an exeemely short- 
wavelength trapped-electron temperature-gradient driven mode is given by Diamond et al 
(1991). This short-wavelength limit allows the ions to be treated as Boltzmann-like since 
keps > 1. An upper bound on ke is obtained by requiring that trapped-electron effects are 
important, i.e. w, < me. where y is the real part of the mode frequency. As the mode 
frequency is of order my the corresponding wavelength range is 

(3.3.60) 

Collisions are neglected, which leads to the following constraint: 
wd > &ff. (3.3.61) 

A linear dispersion relation is derived from the quasineutrality condition, where the passing 
electrons are also treated as Boltzmann-like  and the trapped electrons are described by 
the bounce-averaged drift kinetic equation. The trapped-electron equation is solved by 
expansion in powers of W d / W  to yield the following dispersion relation for the mode 

(3.3.62) (1 + 
where Q = w / o d  is assumed to be large for the ordering to be consistent. A criterion for 
instability can be derived from this dispersion relation: 

(3.3.63) 

For E" - $ this is always satisfied and the plasma will be unstable. Equation (3.3.62) 
can be solved to derive the mode frequency, 0, = F ( E ,  5)wd and the growth rate, 
y = G(E,  5 ,  E 7 ) O d  which can then be used in a 'mixing-length' expression for the electron 
thermal diffusivity: 

(3.3.64) 

A linear analysis of the short-wavelength limit of the dissipative trapped-electron 
instability under the same conditions (3.3.60) was performed much earlier by Mikhailovskii 
(1976). The growth-rate obtained is 

_ = -  Y 2 . 6 ( i j / ~ ) ~ i ~ ( I i  + v J 2 )  

w (ln[32(o/(2~))'/2]]3/2 

where V = 3&ueff/4, w is the mode frequency, given by 

(3.3.65) 

(3.3.66) 
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and 11 and 12 are integrals which can be evaluated numerically with the result that 
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I ,  = 1.61 I ,  = -1.07. (3.3.67) 

Instability requires 

qe > 1.52 (3.3.68) 

No expression for the transport is given in this work, but use could be made of the mixing- 
length expression of (3.3.64), with these values of growth rate and mode frequency. A 
maximum bound on the diffusivity can be obtained by using keps - 1. 

3.4. Electromagnetic drift-wave transport 

3.4.1. Electromagnetic electron drift-wave turbulence. In a similar vein to their 
electrostatic drift wave, which we have discussed in section 3.3.1, Molvig et nl (1979) 
investigate the effects of turbulence on the electromagnetic electron drift wave in a 
cylindrical geometry. They find the electromagnetic version is important when the ratio 
of electron thermal pressure to the magnetic pressure, be, exceeds the electron-ion mass 
ratio, i.e. be > (me/%) (be = 2pop. /B2,  where the units are SI). The test-particle diffusion 
coefficient is then dominated by the magnetic fluctuations. Including this diffusion, D, in 
the electron-drift-kinetic equation then yields 

(3.4.1) 

for marginal stability. 

3.4.2. Microtenring turbulence. The collisional microtearing mode is linearly unstable 
in tokamaks but yields very low transport, ,ye - u,ip:. and is unable to account for the 
observed anomalous transport. In large, high temperature tokamaks, collisionless modes 
are more relevant, but the collisionless microtearing mode is found to be linearly stable. 
However, a study by Garbet et a1 (1990a. b) shows that the mode is nonlinearly unstable 
when the turbulent radial diffusion of the electrons is included. The current perturbation is 
derived from a modified Vlasov equation for the electrons which incorporates a diffusion 
term to model these nonlinearities. Inserting the resulting expression for the current into 
Ampkre’s law then gives a radial eigenmode equation for the magnetic fluctuations which 
possesses a potential well characterized by the parameter Bp*: 

(3.4.2) 

The assumption that diffusion will occur at a level which renders the mode marginally stable 
then yields bsD (where SD represents the radial width of the parallel current channel) as a 
function of p,*. This can be approximated by the linear function (Garbet et al (199Ob)) 

Bp* = 0.25 + 12 I k s S D  I . (3.4.3) 

The electron thermal diffusivity is then given by 

(3.4.4) 

The final unknown quantity to be determined is the ratio S ~ / p i  which also has a dependence 
on p; .  To evaluate this, one must take electrostatic fluctuations into account; this requires 
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inclusion of ion dynamics for which a Vlasov description is used. Numerical scanning of 
the parameter space for the marginal-stability condition yields j?,* as a function of both kspi 
and S ~ / p i .  Results are quoted for 'typical' tokamak parameters (q = 2, qe = 2) from which 
an upper bound to the transport is determined 

(3.4.5) 

3.4.3. The earliest work to suggest that 
the electron-temperature-gradient driven mode could be the cause of electromagnetic 
fluctuations and transport in tokamak plasmas is by Rozhanskii (1981). A sheared slab 
geomeq is considered and the hydrodynamic equations are used in two limits-large and 
small j3. In the small j3 case ( p  << ez) the electron thermal diffusivity is given as 

Electron temperature gradient turbulence. 

Z 

x.=.(&) % (3.4.6) 

where a is a characteristic length scale in the radial direction. (Appropriate choices of a can 
be made by comparing with later results to be discussed below. Thus Lee (1987) indicates 
that one should choose a - L,, the shear length scale; whereas the work of Horton et al 
(1988) indicates that a - Rq where R is the major radius and q is the safety factor.) In 
the opposite limit, j3 >> E', the electron thermal diffusivity is 

xe (-5) 23,  U (3.4.7) 

(Comparison with Horton (1988) below suggests that a = Lr. is the correct choice.) The 
next authors to address this electron temperature mode were Guzdar et al (1986) who 
carried out more detailed studies. The theory of the mode in a sheared slab geometry and 
its implications for the electron transport is described fully in the work of Lee et ul (1987). 
Perhaps a more relevant work, as far as tokamaks are concerned, is that of of Horton et a1 
(1988) in which the nonlinear properties of this mode are studied in a toroidal geometry. 
In this subsection we shall discuss these two theories in more detail. 

We begin with the sheared-slab treatment of Lee er a1 (1987) which is a more complete 
description of their original work (Guzdar et a1 1986). Kinetic theory is used to describe 
the collisionless electron-temperature-gradient driven mode in terms of a pair of coupled 
equations in 4 and (which correspond to the electrostatic and electromagnetic fluctuations 
respectively). The equation is solved numerically to analyse the stability properties of the 
first three modes (i.e. the three modes with the lowest number of radial nodes). The principal 
result is that the lowest-order mode is the most unstable and leads to a critical 0. with 

%E 1 
which is consistent with the shorter-wavelength result of Horton et a1 (1988) below. Using 
quasilinear theory, together with linear properties of the mode derived from the numerical 
analysis, they derive the following expression for the electron thermal diffusivity: 

(3.4.8) 

where f(qe) = qe(l + )le). This result is restricted to 

(3.4.9) 
69 

)ld +)le) << 7. 
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Connor (1988) uses scale-invariance arguments to demonstrate the scaling of (3.4.8) for 

The theory of Horton et d (1988) mainly employs hydrodynamic equations in a tokamak 
with a circular cross-section. Hydrodynamic theory predicts that there exists a critical value 

-+ 00 when f(qe) +constant. 

for t le  

‘le$ = $ (3.4.10) 

above which there is an instability. Inclusion of FLR effects raises this value to 

‘le.= = 1 . (3.4.11) 

These can be reconciled by kinetic theory which indicates that the two results correspond 
to different perpendicular wavelen$h regimes: 

$ for k l p i  5 0.3 
1 for kLpi  - 0.5. qe,c - 

thus indicating that FLR effects become important when klp,i 20.3 where 

(3.4.12) 

(3.4.13) 

with ace the electron cyclotron frequency. 
The linear theory indicates that the most important q. driven modes are those with short 

wavelength and are electrostatic in nature. Under the restrictions of the validity of the 
hydrodynamic treatment, i.e. 

the toroidal regime 

s < 2q (3.4.15) 

and the condition that the density profile be sufficiently peaked 

E ,  < 1 .  (3.4.16) 

Horton et al derive the following mixing-length estimate for this short-wavelength mode: 

In the limit of flat density gradient (i.e. ‘le >> 1) they give 

(3.4.17) 

(3.4.18) 

Both of these exhibit a rather low level of transport. 
They then proceed to show that the longer-wavelength part of the spectrum develops 

an electromagnetic component. In Horton et a1 (1987) it is shown that these longer- 
wavelength electromagnetic perturbations can give rise to substantial transport when the 
motion becomes stochastic in nature. Linear theory indicates that in the case of the )le 
driven mode there is marginal stability in this long-wavelength limit. However, in the 
nonlinear theory a long-wavelength mode can be driven unstable through an interaction 
with two shorter-wavelength modes. Stochastic diffusion then leads to two scalings for the 
transport coefficient, coiresponding to the two situations where stochastic diffusion occurs 
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(Horton et a1 1987). For the regime where the circulation frequency of the vortices, RE, is 
comparable to the mode frequency they derive 

(3.4.19) 

where the typical scale length for the turbulence has been taken to be the collisionless skin 
depth, c/ope. In the other regime, where the circulation frequency is comparable to the 
bounce frequency of the trapped electrons, they derive: 

2 

X2.e - (&) @be . (3.4.20) 

They are therefore lead to the following result for the electron thermal diffusivity due to 
stochastic electromagnetic drift waves driven by electron temperature gradients: 

(3.4.21) 

Neither of these obey the qe(l + qe) scaling predicted in (3.4.8) by Lee etal (1987). This is 
because of the hydrodynamic treatment employed by Horton et al which imposes qe >> 1; 
as shown by Connor (1988) f ( q e )  +constant in this limit. 

3.5. Conclusioizs 

Electron transport due to electron drift-wave turbulence is a mature subject and a great 
variety of electron thermal diffusivities have been generated in the literature. A test of these 
against JET data has been carried out by Tibone et al (1994). Many of the electrostatic 
drift wave models fail to produce radial profiles for xe increasing towards the plasma 
edge, although more snccess is achieved by invoking the marginal stability idea. The 
models based on the collisionless skin-depth turbulence are found to produce somewhat 
better radial profiles. All the models we have discussed are of the gyro-Bohm family 
corresponding to fluctuations on the scale of ps or c/wpe However, it should be noted that 
the recent numerical simulations of electrostatic drift waves in a sheared slab by Caneras et 
al (1992) have indicated longer wavelength fluctuations around low-order rational surfaces 
which could lead to Bohm-like behaviour. Conuor et af (1993) have shown that toroidal 
coupling effects could also lead to extended drift-wave structures. The associated transport 
may therefore be large, possibly causing the density, temperature. etc to take up marg~inally 
stable profiles: in any case one might again expect a more Bohm-like scaling. 

4. Electron transport induced by magnetic islands 

4.1. Overview 

The magnetic component of electromagnetic fluctuations considered in section 3 can cause 
stochastic magnetic fields and result in an anomalous transport according to the Rechester 
and Rosenbluth (1978) formula. In this section we concentrate on the magnetic fluctuations 
associated with finite-sized magnetic islands resulting from nonlinear tearing-mode island 
instabilities. This topic has seen rapid growth recently and therefore warrants a more detailed 
discussion. 

A tearing instability associated with a given rational surface leads to a chain of magnetic 
islands centred on that surface. I n  a tokamak, many such rational surfaces exist and one can 
envisage a situation when the island chains overlap and interfere with each other. When 
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this occurs the magnetic field becomes stochastic in the region of overlap and anomalous 
transport is expected (Rechester and Rosenbluth 1978). 

In the linear regime the tearing-mode amplitude (and corresponding island width) grows 
exponentially with time, before rapidly entering a nonlinear regime in which the growth 
becomes linear in time (Rutherford 1973): 

J W Connor and H R Wikon 

(4.1.1) 

Here tu is the island width, A' is the standard tearing-mode parameter and U is the 
plasma conductivity. In the limit that the poloidal mode number m >> 1, A' is negative 
(A' = -m/r )  and (4.1.1) implies micro-islands cannot form. One has to identify a 
destabilizing mechanism to drive the islands against this damping and a variety of these 
exist as we shall discuss in detail in section 4.2. Balancing such a drive (which typically 
depends on w) against the A' damping then gives rise to an expression for the steady-state 
island width. Many of the theories which we shall discuss rely on the very presence of the 
island for the drive to exist. This, together with the stochasticity condition gives rise to two 
bounds on the island widths. First the islands must have a sufficiently large width that they 
overlap with the island chain on the adjacent rational surface (the so-called stochasticity 
condition). Second the island width must not be so large as to completely destroy all 
swounding islands (and so lose self-consistency of the theory). 

Let us now turn to the level of transport which is expected when islands of the required 
width exist in the plasma. In the stochastic region we can employ the results of Rechester 
and Rosenbluth (1978) for the test-particle diffusion coefficient 

(4.1.2) 

where L, is the correlation length. The fluctuation amplitude can be expressed in terms of 
the island width w, shear length L, and minor radius r ,  i.e. 

8Br mw2 
- 

B 16rL,. 
White and Romanelli (1989) evaluate L, in terms of the island width to be 

(4.1.3) 

(4.1.4) 

Thus, given the island width (which in general will depend on m) one can derive an 
expression for D (which we assume to be representative of the electron heat diffusivity). 
Strictly one should sum over all n (and m = nq) for which the islands exist. However, 
assuming that the mode spectrum is dominated by some typical wavenumber m leads to the 
following simple expression for xe: 

(4.1.5) 

Knowledge of m and w, which depends on the particular driving mechanism, then leads 
to a scaling for the diffusivity. This treatment of the transport may be too simplistic in 
that it does not address the bounds on w which we discussed earlier (and is therefore more 
relevant when islands evolve independently). 

White and Romanelli (1989) describe a theory of the transport which does address 
these bounds. Although they consider a particular driving mechanism for the islands, their 
treatment is generic to all models which predict the existence of stable islands in a stochastic 

vbew3m 
L,r x e - - - - - - - .  
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sea. The degree of stochasticity is quantitatively described by defining a ‘stochasticity’ 
parameter cr, such that 

as = nq’w 
n 

with 

(4.1.6) 

(4.1.7) 

corresponding to the region ( ialidity. The lower bound a,, (- 1)  must be exceeded for 
islands to overlap, whereas the upper bound, asL indicates stochasticity at such a high level 
that all magnetic islands will be destroyed. The sum over toroidal mode number, n ,  in the 
definition of as is assumed to be bounded by some value, n = N .  Taking the island width 
to scale as w = 5 / n  then gives a simple expression for as: 

as = G N q ’ .  (4.1.8) 

This equation determines the value of G for which transport is important. Using equations 
(4.1.’2-(4.1.4) together with (4.1.8) then leads to the expression 

(4.1.9) 

To obtain a result which can be compared with experiment, values for a, and N need to be 
chosen. We have described above how transport is only important when islands partially 
overlap (but are not completely destroyed); this suggests the choice as - 1 (corresponding 
to marginal stochasticity). The number of modes N could be treated as a constant in order 
to obtain a simple scaling for xe with the plasma parameters. If N is indeed a constant, 
then (4.1.9) describes transport for any mechanism which leads to islands in regions of a 
stochastic magnetic field. A variety of such mechanisms exist as we shall describe in the 
next subsection. 

Finally in this subsection we mention the semi-empirical, but successful, Rebut-Lallia- 
Watkins transport model (Lallia et al (1988) and Rebut et a1 1989). This model combines 
an assumption that transport due to magnetic island formation switches on when a critical 
temperature gradient is exceeded, with empirical results from power-balance studies to 
suggest a scaling for the electron thermal diffusivity (which is constructed in a dimensionally 
correct form). Chains of magnetic islands are assumed to exist, localized around rational 
surfaces although the detailed mechanism for their creation is not addressed in these first 
works. A chaotic region exists between the island chains when there is overlapping of the 
islands and the existence of such a region leads to enhanced transport. This is characterized 
by a stochasticity parameter, above which islands overlap and regions of stochastic magnetic 
field exist between them. It is argued that this happens when the electron temperature 
,adient exceeds a critical value. This critical value and the anomalous diffusivity are 
obtained from inspection of Ohmic, L-mode and H-mode JET data. 

Four dimensionless parameters are chosen to describe the dominant physical processes 
occuring in the tokamak-plasma pressure is represented by Bp = 2@,3p/B;, resistivity 
by S = q J / ( B ~ u b ) ,  diamagnetic drift by Q = (VkT/eBoum)2 and power flow by 
Q, = P / ( 3 n 2 r R n k T u b ) .  JET data then suggests the following scalings for the critical 
temperature gradient and heat flux 

Qec = Se/& @e = QflZS:f2(1 - ( Q e c / S p )  (4.1.10) 
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where the subscripts i, e represent elemon and ion quantities respectively. One can also 
utilise certain dimensionless geometrical factors such as aspect ratio, safety factor, etc. 
When these are taken into account a critical temperature gradient of 
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(4.1.1 1) 

is postulated (in SI units and with k being the Boltzmann constant). Note that q is the 
classical Spitzer resistivity and other parameters are standard. This implies 

The anomalous electron heat flux, Fe, is taken to scale as 

(4.1.12) 

(4.1.13) 

when the temperature gradient exceeds the critical value given in (4.1.11) and the radial 
derivative of the safety factor satisfies q' > 0 (Fe = 0 otherwise). Under the same 
conditions, the following expression for the anomalous ion beat transport is obtained 

(4.1.14) 

where the Zef, scaling is introduced in the later work by Taroni et a1 (1991). A scaling for 
the particle flux is also obtained in this later work 

It is interesting to note that one can express ,ye in the gyro-Bohm form 

or equivalently, 

(4.1.15) 

(4.1.16) 

(4.1.17) 

4.2. Island drive mechanisms 

The essential feature of theories of island growth is that they should give rise to a perturbed 
parallel current which is able to drive the island growth against the A' damping illustrated 
in (4.1.1). As the expression for the transport given in (4.1.9) is independent of the island 
drive, we expect this result to be applicable to all the theories discussed in this subsection. 
Alternatively, one can use the expression (4.1.5), substituting for the corresponding island 
widths. 
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4.2.1. Stochastic transport of current density. White and Romanelli (1989) examine 
whether current, carried from one island chain to another by diffusion across the stochastic 
region. could self-consistently sustain the islands (i.e. counteract the natural stability o f .  
the high m tearing mode). Particles can diffuse radially across the stochastic region and 
(assuming the collisionality to be small) they will cany information from one island chain 
and deposit it at another after a correlation time zc = Lc/um where L, is the correlation 
length (see (4.1.4)). The distance travelled in this time, L,  is related to the test-particle 
diffusion coefficient, D, through L = (Drc)I/’. The net current fluctuation, SJ,, ,  arriving at 
an island chain from two adjacent chains (a distance L away) is given by SJI1 = LzJ /  where 
Jll represents the equilibrium current and primes denote radial derivatives. This perturbed 
current can only result when the stochastic region exists; it then leads to island growth if 
JI; > 0 and this drive exceeds the decay due to A’. One then finds that stable islands can 
exist if the parameter, p ,  where 

lies in the range 

Q < P < P ~  (4.2.2) 

where the value of pe is not determined but can be taken to be approximately unity. With 
increasing drive, p decreases to zero and as approaches a stable solution a, (where or, - 1) 
to maintain the estimate (4.1.9). In fact, the solution for as approaches ac very rapidly as 
p drops below pc so that the transport is expected to be relatively independent of the drive 
once the threshold has been passed. One might expect a similar threshold to exist whatever 
the driving mechanism. 

4.22. P$rsch-Schluler and bootstrap current islands. A modification to (4.1 .I) due to 
PfirschSchliiter-type currents can be obtained by taking into account the combined effects 
of magnetic curvature and pressure gradients. This work has been performed within the 
framework of MHD by Kotschenreuther etal (1985) where it is found that (4.1.1) is modified 
by a term, up, proportional to the pressure gradient, i.e. 

(4.2.3) 

From (4.2.3) we see that if ap > 0 then Pfirsch-Schliiter currents are able to drive high 
m perturbations and stable small-scale islands of width w = -“,,/A‘ can form. This 
corresponds to an equilibrium with unfavourable average magnetic curvature whereas a 
tokamak (which has favourable curvature) has ol, e 0. Thus PfirschSchliiter-type currents 
cannot drive small-scale islands in a tokamak for q > 1. 

In a tokamak particles can become trapped in the weaker magnetic field on the outboard 
side. These can couple to the pressure gradient and produce a current which flows parallel to 
the field lines-the so-called ‘bootstrap current’. The difference in bootstrap currents inside 
and outside a magnetic island might sustain the island. This is addressed by Carrera et al 
(1986) who consider a toroidal equilibrium at large aspect ratio. A collisionality parameter, 
d = ve/wte, is defined, where v, is the electron collision frequency and w, is the transit 
frequency. The motion around the major axis is assumed to be collisionless, leading to the 
conditions 

d < E’’* < 1. (4.2.4) 
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Within the island the motion is collisional and, since the ‘island collisionality’ - (r/w)vre, 
the island width is ordered as w - d2a where a is the plasma minor radius. The current is 
calculated from the Ohm’s law for the island, which Carrera et a1 derive from a solution 
of the nonlinear drift kinetic equation for the electrons. 7Svo small expansion parameters 
are identified4 (as defined earlier) and 6 = pe/w where pe is the elechon Larmor radius 
and w is the island width. Expanding to zeroth order in 6 and third order in d leads to the 
lowest-order Ohm’s law in the island region: 

Jll = 2.3(1 - 2 . 1 ~ ‘ / ~ ) ~ &  (4.2.5) 

where E is the inverse aspect ratio of the flux surface about which the island chain is centred, 
El, is the poloidal average of the electric field in the island and 0; is the classical Spitzer 
conductivity, us = 1.97ne2rc/m,. The total conductivity is reduced relative to the classical 
value due to the effect of trapped particles and this modifies the A‘ damping term. 

In order to obtain the bootstrap current contribution it is necessary to expand the drift 
kinetic equation to first order in 6. This results in the following expression for the island 
bootstrap current: 
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0.73 dn 
.Ib = -- E ‘/2pp.evth e- 

10 12 dr 
(4.2.6) 

where 10, 2 are numerical integrals (defined in the reference), and ppe is the poloidal electron 
Larmor radius (temperature gradient effects have been neglected which is justified in that 
they contribute relatively little to the bootstrap current-at least in the large aspect ratio 
equilibrium case). Combining this with (4.2.5) leads to the total current, from which the 
following island width can be deduced: 

(4.2.7) 

where L,  is the density scale lengh (retaining the sign). Note that for hollow density 
profiles (L, > 0) or negative shear (L, < 0) bootstrap current islands cannot form. 

Kuvshinov eta! (1989) generalize the work of Kotschenreuther etal (1985) and Carrera 
et al (1986) (discussed above) to include finite pressure effects by considering a tearing 
parity resistive ballooning mode as a possible candidate for magnetic islands in a tokamak. 
Stability of these pressure-gradient driven modes is characterized by a parameter A; to be 
found from the asymptotic form for the solution in the (linear) ideal region (the subscript 
B indicates that the quantity is calculated in ballooning space). In the region around the 
rational surface they solve the equations describing continuity, longitudinal equation of 
motion (neglecting inertia), Ampkre’s law and the longitudinal Ohm’s law (including the 
bootstrap current). This gives an expression for magnetic perturbations in the ‘layer’ (related 
to Ab through matching to the ideal region) from which the following equation for the island 
evolution can be obtained 

(4.2.8) 

where G2 is a numerical coefficient (G2 Y 0.39). Other parameters are 1y = -cppr/Lp and 
the longitudinal electron viscosity, &; Clo is a nieasure of the average curvature (defined 
such that U0 < 0 if the average curvature is good) and H = @(E + a)/$. The terms 
proportional to I / w  represent the effects of bootstrap and Pfirsch-Schliiter currents. Strauss 
(1981) has shown that A; < 0 if 2H’l2  << 1. In a tokamak both H and U0 are small 
compared to the bootstrap current term (proportional to pe in (4.2.8)), especially in the 
low-collisionality regime v,, < 1, and one may therefore drop these terms when evaluating 
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the steady-state island width. In this low-collisionality regime fie U,.& so that (using the 
Strauss result for A;) the steady-state island width for the tearing parity resistive ballooning 
mode is given by 

w=-l2.5-  ( - Gi ) ”’ tan (5) 
m 8L,S’lZ 

(4.2.9) 

In the limit pp -+ 0 the scaling of (4.2.7) is recovered (though there is a small discrepancy 
in the numerical coefficient). 

4.2.3. Drift and FLR efsects. Smolyakov (1989. 1993) investigates the possibility that drift 
and FLR effects may cause a perturbed parallel current. The small-scale islands which result 
are thus termed ‘drift magnetic islands’. Considering a sheared-slab equilibrium geometry 
(relevant if the island width is much less than the plasma radius) Smolyakov calculates the 
evolution of magnetic islands in two limits-pi << w and pi >> w. In each case a parallel 
current is evaluated from the continuity equation: 

(4.2.10) 

where u~ is the E x B drift, W d j  is the diamagnetic drift, I?: is the transverse ion flux 
and the subscript j labels the species. The contributions to the ion flux depend on the ion 
Larmor radius regime under consideration. 

In the regime pi >> w the large ion orbits average over the electrostatic potential and 
the ions take up a Boltzmann distribution so that I?i vanishes. The electron density and 
the potential are calculated from the collisional Braginskii equations (continuity, Ohm’s law 
and temperature equation) and quasineutrality. These are then used to evaluate the left-hand 
side of (4.2.10) from which the parallel current perturbation SJ,, can be calculated. The two 
equations which result from matching the real and imaginary parts of the island layer to the 
ideal layer (through Ampkre’s equation) then lead to expressions for the steady-state island 
width, w and its rotation frequency, o: 

1 
e VI . (nus f 11Wde - ri) -VI1 . JII 

(42.11) 

OJ = o*dl - ) l e / d  (4.2.12) 

Here, electron and ion temperatures have been assumed equal (i.e. z =~ 1) 7. is the ratio 
of electron density scale length to temperature scale length, qcr = 0.49 and p = 2p0p/B2. 
For high m modes (so that A‘ Y -m/r )  we can see that there will be two situations which 
lead to instability (island growth): 

Ve > 2vcr or )le < 0 (4.2.13) 

(where ore > 0, o,i < 0). In the first case the islands are predicted to rotate in the ion 
diamagnetic drift direction and in the second in the electron diamagnetic drift direction. 

In the opposite limit, pi << w, fluid equations for the ions are appropriate. The ion 
continuity equation is used to determine the ion density perturbations with contributions from 
the ion polarization velocity and gyroviscosity included. Following a treatment analagous 
to the short-wavelength limit Smolyakov derives the following expression for the stable 
island width 

(4.2.14) 
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The rotation frequency is the same as that for short-wavelength modes (i.e. equation (4.2.12)) 
and the condition to be satisfied for islands to exist is 

J W Connor and H R Wilson 

(4.2.15) 

Hugon and Rebut (1991) attempt to justify the critical-temperatugradient model of 
Rebut et al (1989) discussed in section 4.1 by proposing a similar mechanism for self- 
sustainment of magnetic islands. Two contributions to island evolution are considered-one 
due to the different responses of electrons and ions to the islands (because of their differing 
Larmor radii) and one due to an artificial ‘gravity’ (which plays the role of magnetic 
curvature). The model is analysed in a slab magnetic geometly with cylindrical effects 
incorporated through the gravity. This models unfavourable magnetic curvature and leads 
to island growth; in a tokamak (for q z 1) the favourable average magnetic curvature tends 
to damp the islands. We shall, therefore, not consider the curvature effects in this model 
(see section 4.2.2 for the effects of curvature in a tokamak) but instead describe the differing 
Larmor radius effects which have been discussed in more detail in Rebut and Hugon (1991). 
These arise when the ion Larmor radius is comparable with the island width. The electrons 
have a small Larmor radius and respond to the local electrostatic potential associated with 
the island as they move along magnetic flux surfaces. (These are closed within the islands 
but open beyond the island separatrix, leading to different electron responses in the two 
regions.) The ion gyro-orbit, however, samples both inside and outside the island so the 
ions have a non-local response to the potential. Thus the elechons and ions move under 
different effective potentials and therefore they have different E x B drifts. This gives rise 
to a current perpendicular to the magnetic field which is not divergence free. In order to 
satisfy V . J = 0 a parallel current must flow and it is this current flow which leads to 
island growth. Stable islands are formed when this growth balances the stabilizing A’. 

The calculation involves the radial electric field which is determined by an ambipolarity 
condition for transport in the stochastic region. This field is expressed in terms of the 
equilibrium density and temperature gradients by taking a Boltzmann electron density 
distribution and assuming the electrons travel along the perturbed magnetic field lines with 
their thermal velocity. This gives rise to the result: 

(4.2.16) 

More formally, one can make a quasilinear estimate of the electron flux using a kinetic 
description. Requiring that this flux be zero (to first order in the electron-ion mass ratio) 
leads to the following expression for the electric field (Samain 1984): 

which reduces to (4.2.16) for fast electrons, such that o - kllume. 

For pi >> w 
Expressions for the island width can be obtained in the two limits pi >> w and pi << w .  

A’ L; (4.2.17) 

and for pi << w 

(4.2.18) 
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for r = 1. It is interesting to note that these results are very similar to those obtained 
by Smolyakov (equations (4.2.1 1) and (4.2.14)) despite the different analytic approaches 
employed and the different physical assumptions that have been made (in particular, 
Smolyakov's model has collisional electrons while in the Rebut-Hugon model they are 
treated as collisionless). Comparison of the results shows that they exhibit the same 
scalings except that the two differ in their coefficients for the qe terms. This therefore 
implies different threshold criteria for the islands to exist. In particular, the Rebut-Hugon 
model predicts islands to exist for all positive qe, while the Smolyakov model requires ne 
to lie within a certain range (which can include negative )le) given by (4.2.13) and (4.2.15). 
Samain (1984) obtains almost the same result as (4.2.17) but with a different numerical 
coefficient (0.3 instead of 2). 

The resulting transport in this Rebut-Hugon model is assumed to be important only when 
adjacent islands overlap, i.e. when a region of stochastic magnetic field exists between the 
islands. This overlap condition corresponds to a critical temperature gradient which is most 
easily reached for pi >> w .  For p << 1 this condition can be written: 

Overlap for islands with w 5 pi may be more significant for transport and this requires a 
larger critical temperature gradient. This could be obtained from a numerical solution of 
the full Rebut-Hugon expression for the island width if desired. 

Smolyakov and Hirose (1993) have considered the collisionless case when electron 
inertia replaces resistivity in the Ohm's law. Thin islands such that w - c / w p  << pi are 
assumed; thus the ion density perturbation is described by a Boltzmann relation. Fluid theory 
is used to describe the electron response to the magnetic and electrostatic perturbations, from 
which the perturbed current sustaining the island against the A' damping can be evaluated. 
This gives rise to an expression for the saturated island width in terms of the rotation 
frequency, w,  of the island. The dominant contribution to the matching condition which 
determines o comes from the resonant region kllvtbe - w. Because of the assumed thin 
islands, this lies far outside the island in a region where linear theory is valid. Thus linear 
theory can be used to determine the rotation frequency, w = (1 + qe/2)w%e and the island 
width follows: 

Assuming ke - w- ' ,  equation (4.1.5) determines the electron thermal diffusivity: 

(4.2.19) 

(4.2.20) 

4.2.4. Thermal effects on island drive. Thermal instabilities can also lead to magnetic 
island formation as a result of a modification of the island resistivity through temperature 
perturbations (Rebut and Hugon 1985; Dubois and Mohamed-Benkadda 1991). p i s  then 
gives rise to a perturbed current which may drive the island. The electron temperature in the 
island is given by the power-balance equation for the electrons; thus the net power increase, 
P,, resulting from Ohmic and additional heating, is balanced against losses due to heat 
conduction, radiation and electron-ion heat transfer. Assuming thin islands ( m w l r  << 1) 
Rebut and Hugon derive an equation for the electron temperature perturbation 6T, in terms 



764 

of Pu taking the temperature dependence of P, to be weak, i.e. 
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(4.2.21) 

Assuming a resistivity variation - T:” then leads to an expression for the current 
perturbation in the layer. Matching to the external solution leads to the following expression 
for the saturated island width (for m >> 1) 

where 

(4.2.22) 

(4.2.23) 

with JO the equilibrium current. The diffusivity xp is the electron diffusivity within the 
island (assumed to be neoclassical). The condition for islands to fonn is that M > 0 which, 
for q’ > 0 (the usual case), corresponds to P, e 0, i.e. the sinks exceed the sources. This 
situation is most likely to OCCUT outside the q = 2 surface where radiation losses are largest. 

In the work of Dubois and Mohamed-Benkadda (1991) the theory of Rebut and Hugon 
(1985) is extended to allow for the fact that stochasticity in the vicinity of the island 
separatrix reduces the effective size of the island. These authors also use a more realistic 
model of the impurity radiation term in the power-balance equation. Specifically, they allow 
for a temperature dependence of this term (modelled through a quadratic dependence of the 
radiative emissivity on the temperature) which then permits stable islands on a smaller 
scale than those predicted by Rebut and Hugon. Energy balance yields a somewhat more 
complicated equation for the island width requiring numericd solution. Two solutions for 
the width result- low unstable one and a higher stable one. 

4.2.5. Nonlinear ion pumping in a torus. We now discuss this model due to Kadomtsev 
(1991) which proposes another mechanism for anomalous transport involving magnetic 
islands filling the tokamak. The theory is distinct from those discussed in this section so 
far because Kadomtsev does give expressions for xe and these differ from that derived by 
White and Romanelli (1989) (i.e. equation (4.1.9)). The basic idea of the theory is that 
when an ion in its Larmor orbit, radius pi. traverses a much smaller scale magnetic island 
it acquires a transverse impulse (i.e. directed within the average magnetic surface) from 
electrostatic potentials associated with the island. This impulse produces a velocity A V  
where 

miAV - keeb- (4.2.24) 

and w /  V, is the transit time across the island. This causes a radial shift A V/w,i in the 
guiding centre. During the time At - 0;’ that the island remains in phase there are multiple 
crossings which produce a net shift 

- w  
VI 

(4.2.25) 

due to a single island. However the ion interacts with N = pi/w neighbouring islands 
during its orbit which will produce uncorrelated shifts. These are therefore considered as a 
sequence of random shifts so that their net effect is given by: 

81 = -SON’”. (4.2.26) 
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The island pattern due to N similar waves with the mean frequency mx and a similar spread 
Am - m, will be quasi-periodic on a longer period S 2 - I  where S2 = m J N .  During this 
time the shifts can again be summed in a random fashion to yield a total radial shift 

(4.2.27) 6 - NL12Sl - w 

Thus the ion can step in a stochastic manner from one island chain to another. 
Since the period C2 is so long, this is a slow process and the magnetic moment p 

is conserved; id an homogeneous field its energy is therefore also conserved.~ In an 
inhomogeneous toroidal field, however, a shift of the ion position to larger major radius can 
liberate energy to pump the islands. Over many periods a-’ the shifts will time average 
to zero. However, a mechanism for a systematic shift exists if the islands are slanted with 
respect to the mean magnetic surface by an angle y ,  which can arise if the island structures 
are touching each other. Because the islands are slanted, a component of its electric field 
lies along the radial direction producing a poloidal shift y6. This prolongs the interaction 
time with the island and At -+ (1 + yk&)o;’, resulting in 

(4.2.28) 

A systematic radial shift (6) - yk& follows from averaging the quadratic term. The 
corresponding flux as the ion intersects the N neighbouring islands in the time At - m;’ 
is 

(4.2.29) 

directed along the major radius. To obtain a net flux accross a toroidal surface and island 
pumping it is necessary to t&e y - ~ O E C O S ~  so that averaging over a toroidal surface 
element produces 

D-yo<k,w 2 2 3  ubi .  (4.2.30) 

60 + 6oU + ykdo). 

r - W,N(S) - - kiw3v*in 
L, 

Simultaneously the island is pumped at a nonlinear rate 
r 

fi-k2w2vbinT 
aE 
at RZ 
- =~ (4.2.31) 

where Fi - yow/L,. 
We turn now to the electron dynamics which are described by a simplified drift-kinetic 

equation. Kadomtsev argues that for low collisiouality plasmas, dissipation effects on a 
single island structure are not important and the island is free to grow due to the ion pumping 
above. The electron motion takes the form of drift islands displaced from the magnetic 
islands. As the magnetic island grows the drift islands grow at the same rate and eventually 
overlap so that the electron motion becomes stochastic, allowing a transfer of longitudinal 
momentum between magnetic islands. Kadomtsev interprets this as an anomalous resistivity, 
with an anomalous ‘collision frequency’. U, - kllvh. - (v*e/qR)kaw. Because of the 
increase in dissipation with w.’the island width will saturate at some value. This can be 
quantified by balancing the ion ‘pumping’ growth against the electron dissipation damping, 

(4.2.32) 

where Fe is a measure of the island overlap. 

weak island contact and strong island overlap. Thus 
Predictions for anomalous thermal diffusivity, x. - vowz, are made in two regimes- 

xe = W ’ W ~  (4.2.33) 
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where the degree of overlap is represented by a factor Qe. In the weak island contact 
limit the island pumping by the ions is  assumed to be small so that the electrons are able 
to saturate the width at a relatively low value. An estimate of Qe is made as follows. In 
toroidal geometry stochastization occurs in a layer near the island separatrix of width - E W .  

An exchange of electrons within this layer then gives rise to a radial heat flux, which is 
most efficiently transferred by the slow passing electrons (i.e. - of all electrons in 
the layer) leading to an overall scaling c3/*, The island width is assumed to scale like the 
collisionless skin depth (c/op.) and ks is assumed to satisfy kow - 1, so that 
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(4.2.34) 

Stronger transport results when the islands have much more contact. Then the island width 
is obtained by balancing the island pumping by ions against the damping by electrons to 
give, again for kew - 1, 

This yields the following form for the thermal diffusivity 

(4.2.35) 

(4.2.36) 

where it is supposed that C, is only weakly dependent upon the plasma parameters 

4.3. Conclusions 

The Rechester and Rosenbluth formula provides an expression for the diffusion arising 
from a spectrum of magnetic fluctuations. These magnetic fluctuations can arise from fine 
scale magnetic islands and a variety of nonlinear driving mechanisms have been discussed, a 
number of which are proportional to p. A generic form (4.1.9) for the Rechester-Rosenbluth 
diffusivity arising from such islands was obtained. This has neither a Bohm or gyro-Bohm 
scaling if the number of toroidal modes, N ,  is treated as a constant; however, N may depend 
on ,J* = pi/a and a somewhat novel scaling could emerge. The ion-pumping mechanism of 
Kadomtsev also leads to a xe scaling essentially independent of p*. On the other hand the 
semi-empirical formula of Rebut-Lallia-Watkins is gyro-Bohm but it would be desirable to 
generate a more sound theoretical basis for it. 

Testing of these models against JET data (other than the well advertised tests of the 
Rebut-Lallia-Watkins model) was carried out by Tibone er al (1994). The ion-pumping 
model provided the best radial profiles and parameter scalings. 

The Recbester and Rosenbluth formula suggests that the rapid electrons will escape more 
readily than the ions, leading to a positive radial electric field (in the rest frame in which 
the magnetic fluctuations appear stationary). This is indeed the case for externally produced 
magnetic perturbations but for self-consistent fluctuations satisfying Maxwell’s equations 
quasilinear theory indicates that @ansport is automatically ambipolar (Waltz 1982); the 
radial electric field is determined by viscosities instead. 

Finally we note that some of the mechanisms encountered in driving laminar magnetic 
islands in this subsection (e.g. bootstrap currents) also play a role in fully developed ‘fluid‘ 
turbulence theories which we describe in section 5 .  
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5. Resistive fluid turbulence 

5. I. Overview 

767 

In this section we consider the instabilities of a plasma described as a ‘resistive’ fluid, noting 
that ‘resistive’ is to cover both neoclassical effects and the consequences of electron inertia 
in Ohm’s law. We shall see that transport can result from two sources: turbulent mixing and 
a ‘stochastic’ radial diffusion. The latter is as a consequence of the magnetic fluctuations 
which are predicted to arise because of the instability. These can interact to form stochastic 
magnetic fields, and a subsequent radial transport by parallel motion. In the following 
subsections we shall consider two types of resistive fluid instability: resistive pressure- 
gradient driven modes in section 5.2 and resistivity-gradient driven modes in section 5.3. 
Some conclusions follow in section 5.4. 

5.2. Resistive-pressure-gradient driven transport 

In this subsection we consider the transport which would result because of instability to a 
resistive-pressure-gradient driven mode. In the limit of cylindrical geometry, where there 
is unfavourable curvature, the mode is unstable and has an interchange nature (and is thus 
termed the resistive interchange mode); it is relevant for a description of the transport 
in RFP’s or stellarators where there is bad average curvature. In a tokamak the average 
curvature is ‘good‘ when q > 1 and therefore this mode is usually stable. However, 
tokamaks are truly toroidal, requiring a full toroidal treatment of the pressure-gadient driven 
mode. The mode then has a ballooning nature and the bad curvature region can dominate. 
This   resistive^ ballooning) mode may be unstable in a tokamak and is the instability on 
which we concentrate in this subsection. 

The equations describing a plasma as a resistive fluid are invariant under certain sets 
of scaling transformations of the various plasma parameters. This invariance can be used 
to determine the dependence of the diffusivity on these parameters. In fact, if sufficient 
assumptions are made about the equations which govern the turbulence evolution then a 
complete scaling of the diffusivity can be derived. This has been done, for the resistive 
pressure-gradient driven mode (Connor and Taylor 1984) where two contributions to the 
transport are considered-a convective cross-field diffusion and a loss due to parallel 
transport along the stochastic magnetic field. The turbulence is considered in the following 
limits: 

n >> I n21S << 1 pq2 /e  < I (5.2.1) 

where n is the toroidal mode number, S = ~ ~ 1 - 6 ~  (with the resistive diffusion time, r R  
and the poloidal Alfvkn time, ZA, defined by TR = por2/v  and TA = ~ ( / L o p m ) ” 2 R q / B  
respectively, where is the plasma resistivity and pm is the mass density). Assuming that 
the diffusion coefficient scales as the square of a radial step size to a time step, the invariance 
transformations lead to the following result for the convective diffusion coefficient: 

i l f f  

PO s 
& =go-  (-) 

where go is a constant factor and 

ff = 2p0Rq2 dp 
B2 dr ’ 

(5.2.2) 

(5.2.3) 

The radial transport due to parallel diffusion along the stochastic magnetic field lines 
is given by (4.1.2). Two collisionality regimes may be considered-highly collisional 
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(such that A d p  cc L,) and collisionless (such that A d p  > L). For the collisional case 
the dominant mechanism for decorrelation of the electron paths is collisions, so that 
D1 = (u&Jwe)(8B/B)2. Using the invariance transformations of the equations describing 
the turbulence: 
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(5.2.4) 

where gl is a numerical coefficient. This gives the following result for the diffusion due to 
the stochasticity of the magnetic field lines in the collisional limit: 

(5.2.5) 

In the collisionless case, the electron path is correlated over the magnetic-field-line 
correlation length L,. This is calculated by assuming that the diffusion of the magnetic 
field lines is described by a random walk whose characteristic step length, Ar,  is given by 

Ai- = (GB,/B)L, (5.2.6) 

and deriving the forms of Ar and (SB,/B) using the scaling arguments. Substitution into 
(4.1.2) then leads to the following result for the stochasticity diffusion coefficient in the 
collisionless limit: 

(5.2.7) 

Renormalized quasilinear calculations (Carreras et a1 (1983b)) are of necessity in agreement 
with these diffision coefficients. 

Subsequently Cmeras et al(1987) considered the nonlinear calculation of the diffusion 
resulting from the resistive interchange mode. The equations are similar to those considered 
by Connor and Taylor (1984) apart from two extra terms appearing in the pressure evolution 
and vorticity evolution equations which are included in order to model the viscosity p and 
cross-field thermal diffusivity XL. A linear analysis of these equations indicates that these 
two terms are crucial in identifying a saturation mechanism for the nonlinear analysis. 
It is found that for non-zero values of both f i  and ~1 there exists a critical poloidal 
mode number m, above which the plasma is stable to the resistive interchange mode. 
Saturation occurs when the rate of transfer of energy from the unstable low m modes 
to the stable high m modes equals the rate of increase of energy driving the instability. 
Renormalization techniques are used to represent the nonlinearities in terms 0f.a 'nonlinear' 
diffusion coefficient and viscosity so that the equations resemble the linear expressions with 
enhanced transport coefficients. Solution of the equations leads to an eigenvalue expression 
which, for zero growth rate, gives the following relation between the nonlinear diffusion 
coefficient and viscosity: 

D = 0,111 (5.2.8) 

where D d  represents a mixing-length expression, i.e. the cylindrical analogue of D, (see 
(5.2.2)). The enhancement A is a logarithmic factor (dependent on the Viscosity and 0) 
which enters wholly as a result of the introduction of the renormalized diffusion and viscous 
terms and can lead to a significant increase in the predicted diffusion over mixing-length 
estimates (without significantly altering the scaling). 

Of course, resistive interchange modes are of little relevance to tokamaks but they are 
closely related to the resistive ballooning mode. Comparison with the results of Connor and 
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Taylor (1984) suggests the following form for the enhancement factor A in the case of the 
resistive ballooning mode: 

The nonlinear viscosity, pLn, is related to the diffusion, D through 

(5.2.9) 

(5.2.10) 

and 

D = D,A (5.2.11) 

where D, is the result of (5.2.2). An iterative solution of (5.2.11) yields an expression for 
D in terms of the plasma parameters: 

(5.2.12) 

This expression involves the poloidal mode number m ((m2)’/’ is its RMS value) and a 
value for this needs to be chosen. Numerical simulation indicates that the most important m 
value is such that m = (m2)’/’ and that (mz)i /z  varies with the parameter B/(2c2). Cameras 
et al (1987) quote a table of m values as a function of 8/(2c2) 

B / ( m  (na2)1/2 
0.0025 12 
0.0050 6 
0.0075 3 

(52.13) 

0.0100 3 
0.0125 3 .  

The heat transport due to stochastic magnetic fields set up by instability to resistive 
pressure-gradient-driven turbulence is analysed by Cameras and Diamond (1989) using the 
Rechester and Rosenbluth formula. The ‘collisionless’ limit is used and an expression for 
the corcelation length, L,, in terms of the magnetic fluctuations is invoked. The magnetic 
fluctuations are related to those in the electrostatic potential through 0hm:s law. Assuming 
the spectrum of poloidal wavenumbers again satisfies m = (m2)I/’ then yields the electron 
thermal diffusivity due to resistive ballooning modes: 

(5.2.14) 

Here (nz)I/2 represents an rms average of the toroidal mode number for the instability, and 
is related to the poloidal wavenumber through m = nq. 

Diamagnetic effects modify x. (Cameras et al (1983a)) through the substitution 

where 

(5.2.15) 

(5.2.16) 

with eo = a f R, a being the plasma minor radius. 
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The thermal diffusivity due to the resistive ballooning mode in a magnetic geometry 
which has a separatrix is calculated by Hahm and Diamond (1987). Considering a simple 
equilibrium where the separatrix has two X-points, they investigate how such a geometry 
affects the diffusivity. An identification of the saturation mechanism for the turbulence is 
required and this is assumed to occur when the pressure fluctuations are such that they mix 
the pressure ,-diem over the radial mode width. The following expression for the thermal 
diffusivity due to stochasticity of the magnetic field is obtained 

X e  = f X ( P ) X 0 .  (5.2.17) 

Here xo is the value of the diffusivity in a circular flux surface geomeny: 

(5.2.18) 

and f x ( p )  represents the effects of the flux surface shaping: 

(5.2.19) 

where K ( p )  and E ( p )  are the complete elliptic integrals of the first and second kind: 

(5.2.20) 

with p a radial parameter, p = r/rS where r is the minor radius, measured along the 
symmetry plane (0 = 0) and r, is the value of r at the separatrix surface. The safety factor 
q has the usual definition and qc is the cylindrical limit. The shear parameters are defined 
as s = d Inq/d lnp and sc = d InqJd Inp. Other parameters are the pressure gradient, 
E$ 

(5.2.21) 

and S = 7&* as defined previously. Here, @ is the poloidal flux function, so that this 
definition of reduces to that of (5.2.3) in the circular flux surface limit. 

So far we have described the pressure-gradient-driven turbulence through the resistive 
MHD equations, which are strictly only valid in the short-mean-free-path (PfirschSchliiter) 
regime. At lower collisionalities (in the banana or plateau regimes) trapped-particle effects 
can become important through their viscous interaction with the circulating particles. For 
example, in the presence of a pressure gradient, this viscous interaction gives rise to an 
additional current, the so-called bootstrap current. Connor and Chen (1985) use gyrokinetic 
theory to derive the linear stability properties of the pressure-gradient-driven mode in a 
low collisionality plasma. Even in the absence of curvature instability is possible due 
to the bootstrap current and neoclassical viscous damping. Because of its role in the 
driving mechanism, this mode is sometimes referred to as the ‘bootstrap current mode’. An 
alternative linear analysis of the bootstrap current mode was given by Callen and Shaing 
(1985’) using a set of modified fluid equations that take into account neoclassical effects. 
These give the same result for the linear growth rate as that derived using gyrokinetic theory 
by Connor and Chen. The nonlinear theory and resulting transpoa has been investigated by 
Kwon etal (1990) using this set of neoclassical MHD equations. The saturation mechanism 
for the turbulence is similar to that described previously-only low m modes are unstable 
and as the mode grows, the nonlinear terms transfer energy to the stable higher m modes 
where it can be dissipated. To describe such a saturation mechanism a full two-point theory 
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would have to be employed. Kwon et al instead use a one-point method whereby the 
nonlinear terms are renormalized to give turbulent diffusivities. Saturation is then assumed 
to occur when the diffusivities reach such a level that the growth of the fluctuations vanishes. 
This leads to an eigenvalue equation, which can be solved to yield the following expression 
for the pressure diffusivity: 

1 €  II L ,  2 D - - -p  -&-A,, 
Q - 8 n q  Q I L O  Lp 

in terms of the following definitions: 

2.3&ve 
ILe = 

[I + 1.02u:!2 + 1.07!J*,] 

(5.2.22) 

(5.2.23) 

(5.2.24) 

(5.2.25) 

or, N 0.51. L ,  = -(dlnp/dr)-’ and pp is the poloidal beta. This neoclassical instability 
also gives rise to stochasticity of the magnetic field, which can therefore result in enhanced 
electron heat transport 

where m needs to be specified. 
The expressions above a e  controlled by collisional (or neoclassical) resistivity. Itoh 

et a1 (1993) invoke a model involving anomalous electron viscosity in the Ohm’s law. 
Introducing an anomalous fluid viscosity and thermal diffusivity in the vorticity and 
thermal equations respectively they obtain an unstable ballooning mode. Assuming that the 
anomalous transport coefficients are all due to turbulence associated with this instability they 
can be related through their quasilinear expressions. Their values when the corresponding 
turbulence is saturated can be obtained by demanding that the most unstable mode is 
marginally stable. The result for the fluid thermal diffusivity is 

(5.2.27) 

where h(0)  = 1.7, h(s > 0.7) = 2.5s. This can be considered as an analogue of the work 
of Cameras er a[ (1987) for a collisionless fluid. 

Recently Connor (1993) has pointed out that the anomalous transport coefficients can 
arise from renormalizations of the electron inertia in the collisionless Ohm’s law. Using 
invariance techniques Connor obtains a similar result to (5.2.27) and also an expression for 
the associated stochastic magnetic field electron thermal diffusivity: 

(5.2.28) 

These forms are valid for fluid electrons with 01 > mjpe/m,. In hotter plasmas where the 
reverse inequality holds, a kinetic Ohm’s law is required. Using the Ohm’s law suggested 
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by Kadomtsev and Pogutse (1985) which incorporates electron Landau damping, Connor 
obtains 
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and 

(5.2.29) 

(5.2.30) 

for fluid turbulent convection and electron transport due to the associated stochastic magnetic 
fields, respectively. 

5.3. Resistivity-gradient driven transport. 

Resistivity-gradient driven turbulence can result from two sources: a gradient in the electron 
temperature or a gradient in Zee (i.e. in impurity density gradient). The instability caused 
by an electron temperature gradient resulting in a radial variation of the resistivity is often 
called the rippling mode. This is a mode which is of a resistive MHD nature and is driven 
by a radial gradient in the current (which exists as a consequence of the resistivity gradient). 
A high electron collisionality is necessary in order to overcome the stabilizing influence of 
the parallel electron thermal conduction, and this would imply that this mode could be 
relevant to transport at the tokamak edge. The linear stability of the rippling mode in a 
sheared slab is investigated by Hassam and Drake (1983) using Braginskii fluid equations 
with a modified Ohm’s law (Hassam 1980). The modification is due to the time-dependent 
thermal force which exists in the presence of a temperature gradient. This term is neglected 
in Braginskii’s equations which are valid only in the limit that the parallel diffusion rate 
for the electrons is larger than the mode frequency. Hassam’s modified fluid equations 
contain this extra drive and so are useful for investigations of the linear stability of the 
rippling mode. Hassam and Drake (1983) identify three regions in parameter space. In 
region I, at very low temperature, the mode is described by an Ohm’s law in which parallel 
pressure perturbations are small compared to the resistivity perturbation, and then the mode 
is found to be purely growing in nature. As the temperature rises the plasma enters reaon 
I1 where the pressure perturbations become more important, with density fluctuations being 
described by the electron continuity equation. The mode frequency then gains a real part 
which is of the order of the diamagnetic drift frequency but the mode is still unstable. 
As the temperature is raised still higher, the collisionality drops, the parallel conductivity 
rises and the mode is stabilized-this corresponds to region III. Thus the stability boundary 
is the boundary between regions I1 and IU. Numerical calculation (qualitatively supported 
analytically) indicates that the rippling mode is unstable for 

(5.3.1) 

with kyLT - m, the poloidal mode number. Here, the units are SI except for temperature 
which is measured in eV. The subscript zero indicates the parameter measured at the 
plasma centre, which enters because of the model chosen for the plasma current density 
[ j , ,  = ~ ( B / ~ O R ) ( T / T O ) ~ / ~ ] .  For JET-like parameters this critical temperature is of the order 
of a few lo’s eV and therefore the mode will only exist right at the plasma edge (if at all). 
The transport due to turbulence induced by the rippling mode is analysed by Garcia ef al 
(1985). 
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As mentioned earlier, a radial variation in the impurity concentration can also give rise 
to a resistivity gradient and thus cause rippling-mode turbulence. Impurities are included in 
the analysis of Hahm et a1 (1987) where it is found that their effect is to give an additive 
contribution to the total transport due to resistivity-gradient driven turbulence. Whether 
the transport is enhanced or diminished by the impurity gradient depends on whether the 
impurity concentration increases or decreases towards the plasma edge. A linear calculation 
by Tang etal (1988) indicates that the critical temperature for stability (i.e. (5.3.1)) is raised 
if the impurity profile increases towards the plasma edge (though it is still expected to lie 
in the region of the order a few 10s of eV). 

The most recent modification to the theory is by Thayer and Diamond (1987, 1990) 
who include radiation effects due to impurities, which may be important at the plasma 
edge. The earlier work also encompasses the previously mentioned calculations involving 
resistivity-gradient turbulence so we shall restrict ourselves to a description of that. It 
considers turbulence driven by resistivity and impurity gradients with saturation occuring 
becausethe turbulence enhances the parallel conduction of heat and impurities which damps 
the energy source. The effects of radiative cooling are also included and are found to 
enhance the transport. The model which is employed consists of four fluid equations 
describing a parallel Ohm's law, vorticity evolution, resistivity evolution (or, equivalently 
the temperature evolution) and an equation describing the dynamics of the impurities (which 
is derived from the continuity equation for the impurity and main species ions). Radiative 
cooling is due to an impurity radiation rate, Zz(T), defined such that it cools the temperature 
according to 

(5.3.2) 

where nz is the impurity density. The dependence of the particle diffusion coefficient on 
I z (T)  appears through the 'growth rates' YR and yz where 

(5.3.3) 

(5.3.4) 

and no is the main species (singly charged) ion density. For a low Z impurity such that 

(5.3.5) 2 nzZ<<ni nZZ e n ;  

the following equation is derived for the particle diffusion coefficient, 0,: 

with 

(5.3.7) 

where q is the resistivity, J, is the toroidal current density, Bz is the toroidal field, L, is the 
shear length, qz = L,/Lz,  Lz = [d(ln Zeif)/dr]-' and L,  = [d@q)/dr]-'. The impurity 
parallel diffusion, xz = (mi/mz)'/Zu~i/(Z2u;i) and XT is the thermal parallel diffusion of 
the elecfrons (XT - ~ z Z ~ ( m z / m , ) ' / ~ ) .  The parameters rR and rz are related to yR and 
YZ through 

r R  = Y R / Y R  rz = y z / ~ z  (5.3.8) 
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where 
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(5.3.9) 

Finally, kll = (m - nq) / (Rq)  = mx/(rL,)  where R is the major radius, m the poloidal 
mode number and r is the minor radius of the rational surface about which the mode is 
centred. The prime on kll indicates derivative with respect to the distance from the surface, 
x ;  thus k;  = m / ( r L J .  

Equation (5.3.6) can be solved in certain limiting cases. When radiation effects are 

D, = Do(l+ ~ 2 ) ~ ’ ~  (5.3.10) 
which is the result derived by Hahm eial (1987) where the resistivity-gradient driven mode 
was investigated without consideration of the radiation effects. The limit of no impurities 
(i.e. qz + 0, the rippling mode) is in agreement with the calculation of Garcia eta1 (1985). 
Expressions are also given for the impurity, D z ,  and temperature, D7, diffusivities: 

Dz = D. Dj- = ~ ( x z / ~ r ) ’ ~ ~ D , ,  . (5.3.1 1) 

small (rR (< 1, r z  << 1) 

For r R  >> 1, qz 

Dn = D& (5.3.12) 

while in the limit that r z  >> rR, r z  >> 1, qzrz >> rR and qzrz >> 1 are satisfied, we 
have 

D, = (5.3.13) 
The above work makes the assumption that the pressure remains constant (i.e. the 

density fluctuations exactly cancel the temperature fluctuations). In fact this is a poor 
approximation and leads to a significantly larger transport due to the thermal instability than 
would otherwise be obtained. This is demonstrated in a later calculation by Thayer and 
Diamond (1990) where the model considered consists of the evolution equations for the 
temperature, density and parallel velocity fluctuations (the impurity density profile is taken 
to be constant in this calculation, i.e. qz = 0). In the analysis described above the effects of 
the radiative instability could be described in terms of a single growth rate (see (5.3.3)) 
due to the fact that Z/n  = - f / T .  If this constraint is dropped, then two ‘growth rates’ can 
be defined-one describing thk instability driven by density fluctuations, yn and the other 
by temperature fluctuations: 

(5.3.14) 

(where y.q = yn + y ~ ) .  The drive due to density fluctuations (called the condensation 
instability drive) is a robust instability because if more than one impurity exists many 
Iz(T) spectra contribute to a total, thus enhancing the gowth. The same is not true of the 
thermal instability drive, however, because for a given temperature, T, dZZ/dT can have 
different signs for different impurity elements, and therefore extra impurities can either 
enhance or suppress the growth of the instability. For this reason, the thermal instability 
is also referred to as a ‘fickle’ instability. The calculation proceeds in a similar manner to 
the one described above in order to derive the factor by which radiation enhances the radial 
diffusion. No diffusion coefficients are calculated in this work, but the result indicates that 
r R  of the previous theory can be replaced by 

(5.3.15) rR + rT + (Xn/xT)2/3r. 
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where r, = Y , U , ~ ~ ’ ~ ( X , ~ ~ ~ ) - I ~ ~  for j = ~ , n ,  with v,o = 3!&pLs/(4~RoBoL~) and 
x,, = v,i/wir, XT = vIhe/u,,. For typical tokamak parameters & / X T  - and so 
the replacement of (5.3.15) represents a significant reduction in the transport. In particular, 
in the (radiation dominated) limit, rj >> 1, 

(5.3.16) 
thus indicating that the robust condensation instability has a negligible effect on transport, 
which is now seen to be dominated by the fickle instability. An estimate of the level 
of reduction in the transport can be obtained by evaluating the ratio r T /  rn. Assuming 
yn 2 ~7 (5.3.16) gives rise to at least a factor of four reduction compared to (5.3.12). Thus 
the diffusion due to a radiation dominated instability is actually much lower than was 
originally thought and (5.3.16) should be used in preference to (5.3.12). 

The above analyses of the resistivity-gradient-driven mode employ the reduced, resistive 
MHD equations which are strictly only valid in the PfirschSchliiter collisionality regime. 
Kwon et a1 (1989) perform a calculation of the transport due to the mode using 
neoclassical equations, which are relevant for a description of a plasma in the banana- 
plateau collisionality regimes. The principal difference between this calculation and those 
of reduced MHD is that the resistivity in the banana regime becomes dependent on the 
plasma density as well as the temperature and thus the rippling mode (which, as described 
earlier, is driven by a resistivity gradient) is now able to tap the free energy source of 
the density gradient Impurity gradient effects, radiative cooling and terms are not 
included and one-point renormalization theory is used to derive coupled equations for the 
time evolution of the density and temperature fluctuations. Requiring a stationary saturated 
solution provides a solubility condition on the resulting equations, from which expressions 
for the radial diffusivities of the temperature and density can be evaluated. These are: 

2 2 

Do = D0U-T + (X,/XT)”3r”12 

(5.3.17) 

(5.3.18) 

where D”,‘ are the radial diffusivities for density and temperature. The parameter x,, = 
c:/pLi where pi = 0.66~1’2~/(l+1.03u~’2+0.31v,~) and ,q is the electron parallel thermal 
diffusivity. Finally, 

4 .51~ ’ /~  

1 + 1 . 0 2 ~ ~ ~ ~ +  1.07u,, 
4.51d~2(0.51u:!2 + 1.07u,) 

(1 + 1.02vt!’+ 1.07~,)~ 
c, = (5.3.19) 

c, = 2 - 2c, . (5.3.20) 

All the diffusivities presented in this section depend on the poloidal mode number m 
and a value for this needs to be selected. Assuming it to be a constant with respect to 
the plasma parameters, it can be absorbed into the normalization coefficient (to be  fixed^ 
by comparison with experiment). Scaling arguments indicate that (for large m) m is not a 
constant with plasma parameters but in fact scales as 

(5.3.21) 

where K = XllrA/(Rq)* for a pure plasma and K = ,xzq,/(Rq)2 when impurities are 
present (Connor 1988). If (5.3.21) predicts a small value form then this is outside its region 
of validity and m could be regarded as a constant to be absorbed into the normalization 
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coefficient. (It is interesting to note that the numerical calculation of (m2)L12 in the case of 
the resistive ballooning mode appears to indicate saturation at (m2)’/2 ,., 3 (see (5.2.13)). 
This may represent a cascade to long wavelengths (n - 1) with (mz)L/2 determined by the 
geometry (i.e. n = 1, q = 3 and m = nq) in which case one is justified in takiig (mz)L/2  
to vary like q) .  

J W Connor and H R Wilson 

5.4. Conclusions 

The fluid models used in this section are relatively simple. This has the consequence 
that powerful scale-invariance arguments can often determine the form of the diffusivities 
uniquely, up to a normalization constant. Furthermore, numerical simulation has been 
widely used to corroborate and guide analytic turbulence treatments. Rippling-type modes 
including impurity radiative cooling effects tend to be restricted in their validity to the 
plasma edge but detailed and encouraging comparisons between theory and experiment 
(e.g. Leboeuf eral 1991) have been carried out. While other resistive models are also valid 
only near the plasma edge, generalizations such as including neoclassical effects or electron 
inertia allow them to be extended to the core. Those involving pressuregradient drives are 
promising contenders for describing L-mode power degradation. Furthermore they are able 
to produce thermal diffusivities which increase to the plasma periphery. These features are 
evidenced by the comparisons with JET data by Tibone etal (1994). 

6. Overall conclusions 

The main purpose of this review has been to provide a source of theoretical expressions for 
anomalous thermal transport coefficients available for ready comparison with experimental 
data-as a corollary validity c o n s ~ n t s  are emphasized. In addition we have sketched the 
theoretical models employed in deriving the expressions. We have concentrated on the 
more recent developments in ion and electron anomalous thermal diffusivities, extending 
and bringing up to date earlier reviews by Liewer (1985), Ross et a1 (1987) and Horton 
(1990). In section 2, after setting the scene by describing earlier work, we considered the 
extensive recent literature on slab q, toroidal Vlj and trapped-ion modes. The latter two 
modes are often considered as serious contenders as an explanation for xi and detailed 
calculations of the stability criteria have been carried out. However, most of the resulting 
expressions for xi are of the gyro-Bohm-type and fail to describe the experimental profile, 
though confinement time scalings with respect to power, density and, for some more recent 
models, current are reasonable. Considerable effort continues in an attempt. to produce 
Bohm-like features and better radial profiles. 

Section 3 addresses the many drift-wave models for electron transport, some generic only 
depending on the existence of drift-wave turbulence, others related to specific instabilities. 
The large number of models stems from the many instabilities, choices of mode structure 
and saturation mechanisms and whether the fluctuations are electrostatic or electromagnetic. 
Again the models are invariably gyro-Bohm and have difficulty with radial profiles even 
when they are able to reproduce confinement time scalings. 

Theories of electron transport based on nonlinear magnetic island instabilities have 
been very popular recently, with many mechanisms, such as bootstrap current or FLR 
effects, being invoked to cause their growth. As a result these models are described in 
somewhat more detail in section 4. Island growth mechanisms tend to increase with fip 
suggesting a link with power degradation observed in L-mode. However, the most successful 
model, the semi-empirical gyro-Bohm Rebut-Lallia-Watkins model, lacks a real theoretical 
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derivation. Transport due to stochastic magnetic fields caused by these islands according 
to the Rechester-Rosenbluth formula tends not to depend on the actual driving mechanism. 
However, there remains a freedom in the choice of the number of contributing islands which 
can affect the p .  scaling of xe. The somewhat heuristic ion pumping model of Kadomtsev 
is independent of p.; but captures features of the experimental xe for L-modes. 

Finally in section 5 resistive fluid models are described. These simple models invite 
the use of scale invariance and numerical simulation to support analytic treatments. The 
neoclassical and electron inertia modified versions of the pressure-gradient models can be 
extended into the core and have a number of encouraging features for describing Lmode 
plasmas. 

A number of the transport coefficients given in this review rely on the Rechester and 
Rosenbluth theory for transport in a stochastic magnetic field which refers to test-particle 
transport. Many authors assume this to be equal to the electron heat transport. However, 
Terry et al (1986) question this association because it neglects important self-consistent field 
effects; when these are taken into account the transport is governed not by the magnetic 
fluctuations but by the electrostariCfluctuations. Later work by Krommes and Kim (1988) 
criticises the analysis of Terry et a1 and claims that such estimates of transport are often 
adequate. 

Comparison between many of the theories considered in this review and JET data have 
been carried out in Connor etal (1993) and Tibone et al (1994). The reader is invited to 
refer to these papers for details but the general picture is 

(i) the xi models are generally unsuccessful and refinements are needed 
(ii) some electron models, in particular stochastic transport due to electromagnetic drift 

waves, Kadomtsev’s ion pumping of magnetic islands and pressure-gradient fluid models 
with electron inertia included in the Ohm’s law, are more promising. 

Much recent theoretical activity, not considered in this review, has been devoted to 
the role of the radial electric field or sheared toroidal and poloidal flows on stability and 
transport, since these are thought to be involved in the confinement improvement of H- 
modes. Another topical theme is seeking explanations for global mode structures (e.g. due 
to toroidal coupling or cascades to long wavelength) in an attempt to justify Bohm-like 
scalings. 

As a final remark we comment on the many expressions for diffusivities described in 
this review. These result from a multitude of limits and assumptions employed in the 
analyses and could be reduced in number if more numerical simulation were employed to 
isolate which of these results are really justified. Thus considerable progress with transport 
due to the slab vi mode has resulted from confronting analytic estimates with numerical 
simulation results. Furthermore, those features of the theories which are really robust should 
be emphasized rather than factors ‘teased’ out of the analysis in some extreme limit or from 
an assumed model for the saturation mechanism. 

We conclude this review with the hope that it provides a useful reference for those 
wishing to interpret transport data in terms of theoretical models and a basis for future 
reviews. 
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Appendix A. Standard definitions 

In this appendix we list the standard definitions which we use in this review. 

kB Boltzmann constant R major radius r~ resistivity 
pm mass density 

J W Connor and H R Wilson 

Appendix E. Summary of diffusivities 

The following pages provide summary tables of the various expressions for the transport 
coefficients that have been described in the text. Standard definitions are given in appendix 
A. However, in order to avoid a lengthy list of the non-standard definitions, the reader is 
refered to the relevant section of the main text for these. We have used the same notation 
for these tables as in the main text and the units are SI unless specifically stated otherwise. 
In the table for transport induced by ITG turbulence we shall usually quote results for F ,  
where xi = Fp,zc,/L,. In the table for magnetic island theories we have defined 
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