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Abstract. Energy and particle confinement in tokamaks is usually anomalous, greatly
exceeding neoclassical predictions. It is desirable to develop an understanding of the undetlying
processes to increase our confidence in extrapolation of tokamak behaviour towards reactor
regimes. The literature abounds with theoretical expressions for anomalous transport coefficients
based on turbulent diffusion due to various micro-instabilities. These often purport to provide
explanations of tokamak confinement at the level of global scaling laws. However, comparison
with experimental data from local transport analyses offers a far more stringent test of these
theories. This review presents the available theories for turbulent transport coefficients,
particularly ion and electron thermal diffusivities, in a way that will facilitate a programme
of testing models against data. Tt provides a brief description of the basis for each theory to
place it in context and then presents the resulting turbulent diffusivity. Particular emphasis is
placed on the validity conditions under which the expressions may be used; this is important
when subjecting them to meaningful tests against data. The present review emphasizes the more
recent developments, building on earlier ones by Liewer and Ross et al. The results of this
work have already been of value in carrying out a programme of testing theories against high
quality JET data (Connor er af and Tibone et af).

1. Introduction

The plasma physics literature abounds.with theoretical expressions for anomalous transport
coefficients (see the earlier review by Liewer 1985) purporting to explain the confinement
properties of tokamaks, often on the basis of crude comparisons at the level of energy
confinement time scalings. The availability of detailed profile data on transport coefficients
from machines such as JET in a range of relevant and varied regimes provides an opportunity
to undertake a systematic comparison of these theories with experiment. As a first step to
realizing this we review the literature on anomalous transport and collect together published
transport coefficients, with an emphasis on the more recent ones. This extends and updates
the similar exercise of Ross (1987).

The vast majority of these transport coefficients are based on turbulent transport due to
fluctnations on a microscopic scale length such as the ien Larmor radius, collisionless skin
depth or resistive layer width. Consequently they can be cast in the generic gyro-Bohm
form (Connor and Taylor 1985; Hagan and Frieman 1986; Connor 1988)

cip_si
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where v,. 15 the electron collisionality, 8 is the ratio of thermal to magnetic energy, T is
the ratio of electron to ion temperature, m; is the species mass. ¢ is the safety factor, s is
the magnetic shear, n; = [V InT;|/|V Inn;| (where T; and #n; are the species temperature
and density), L;l = |Vlnn|, €, = L,/R and R is the major radivs. We have also defined
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the sound speed, ¢; = +/T;/m; and the ion Larmor radius evaluated at the sound speed,
Ps = ~/miT,feB. In practical units (i.e. temperature in keV, magnetic field in Tesla, length
scales in metres) we have

ﬂ! /2T3/2

£ e
BL,
for the diffusivity (in m%s~!} where we have defined p as the ratio of the ion to proton

mass. Equation (1.0.1) is to be compared with the Bohm form

Xei ™ pscsFé,i (1.0.3)
which is associated with transport due to longer wavelength structures whose scale is related
to the plasma minor radius.

Since the information which we collect is to be useful for comparison with experimental
data we take care to define the validity conditions for the applicability of the various theories
and to express the results in a form convenient for evaluation. If the transport coefficients
are large once an instability condition is exceeded the plasma profiles may then sit at
marginal-stability; stability criteria are therefore of value for comparing with experiment
and attention is also drawn to them. In addition to compiling the expressions we comment
in some detail or their physical and theoretical basis in order to provide understanding
and allow an assessment of their value. Some complementary aspects have been addressed
recently by Horton (1990).

The structure of the review is as follows. First, theories of ion transport, essentially
those Involving ion temperature gradient turbulence, are described and discussed in section
2. After a brief overview in section 2.1 we discuss the slab, toroidal and trapped-ion
VT; modes in sections 2.2, 2.3 and 2.4 respectively, adding some conclusjons in section
2.5, Treatments of electron transport due to electrostatic and electromagnetic drift-wave
turbulence follow in section 3. In section 3.1 we provide an overview and then discuss
general transport coefficients based on the assumption that drift-wave turbulence exists in
the tokamak plasma without specific reference to its source (in section 3.2). We then consider
specific instabilities which may be responsible for driving the electrostatic (in section 3.3)
and electremagnetic (in section 3.4} turbulence. Electrostatic modes considered include the
‘universal’ mode and trapped electron modes. In the electromagnetic drift-wave subsection
we consider the electron drift wave, the drift micro-tearing mode and the 1, mode. Some
general conclusions are drawn in section 3.5. In section 4 we consider the transport due to
magnetic islands which arise from nonlinear instabilities. After an overview in section 4.1,
the various drives due to bootstrap currents, drift effects, etc are described in section 4.2;
some concluding remarks are made in section 4.3. Finally, in section 3, we consider theories
of transport due to magneto-hydrodynamic (MHD) turbulence with an Ohm’s-law including
resistivity (incorporating neoclassical effects) or electron inertia. Section 5.1 provides an
overview and section 5.2 addresses the fluid pressure-gradient driven modes (e.g. resistive
ballooning modes) while section 5.3 considers resistivity-gradient modes; some conclusions
are in section 5.4. Some overall concluding remarks are made in section 6.

Although in principle we would wish to include the whole matrix of transport coefficients
these are rarely all given. The emphasis, therefore, is on electron and ion thermal
diffusivities but other coefficients are listed when possible. For ease of use these are also
presented in tabular form in appendix B; a table of the notation used is given in appendix

A,

Xei=3.23 Fi (1.0.2)

The results of this survey have been used by JET and Culham colleagues, in a
comparison of theories of anomalous transport with JET datz and the results are reported
in Connor et al (1993) and Tibone er al (1994).
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2. Ton transport due to VT instabilities

2.1. Overview

We begin with a brief overview of earlier work on the ion heat transport which might be
expected to result from instabilities driven by an ion temperature gradient; this sets the scene
for the discussion of recent work which follows in sections 2.2, 2.3 and 2.4. Such modes
are often characterized by a value of »; (where 15 is the ratio of the density length scale to
that of the temperature) and are therefore often referred to as ‘i modes’. However, in the
Iimit of a flat density profile (s — o0) the mode is characterized by a critical temperature
gradient, and hence the mode is also called the V'T; or ion temperature gradient (ITG)
driven mode. A whole family of these modes exists depending on the tokamak conditions.

The most basic version of the VT; instabilities is the slab mode, which occurs as a
result of ion acoustic waves coupling to a radial gradient in the ion pressure. The two fluid
dispersion relations for the electrostatic modes (of frequency « and wavenumber %, along
the magpetic field and k, perpendicular to it} in a shearless slab takes the form (Horton and
Varma 1972)

15 2
©* — wPw,e — kijc? l:co-i- - (§w+w*e (m - 5))] =0 (2.1.1)

where wye = kypsts/Ly 18 the electron diamagnetic frequency. In the limit m; 3> 1 this
gives rise to the unstable solution

1 ’\/g ) 1/3
o= ( 14 1?) (kee2noa) 212)

the so-called »; mode. Consideration of Landau damping and finite Larmor radius (FLR)
in a kinetic description yields a critical value of #; for instability given by

Bie = 0.95 (2.1.3)

achieved for kyp; = 1. Inclusion of shear leads to a radial eigenvalue problem and the
growth rate depends on the radial mode number . In particular, the maximum growth rate
occurs for (kyps)* = t(1+m)~! and is given by

AN ‘/_’:1(1_4'1)(2; +1) (2.1.4)
e Ly T

for L,/Ls < 1 (e.g. Lee and Diamond 1986).

The turbulence driven by the m; mode is expected to give rise to ion heat transport.
Scale invariance properties of the equations describing the mode (Connor 1986a) indicate
that the ion heat diffusivity, ¥, must take the form

2
pscs Ln Ln
Bl p(Zn Za 2.1.5
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One of the earliest calculations of the heat diffusivity resulting from n mode turbulence
was made by Kadomtsev and Pogutse (1970). The effects of the turbulence are modelled
by inserting an effective heat diffusivity, y,, into the ion drift kinetic equation and solving
for the radial eigenmode structure. An expression for x;j is determined from the condition
that it should render the most dangerous mode stable, thus

2
Lo Ls . (2.1.6)
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which is indeed of the form predicted by the scaling arguments. We shall see later that in
subsequent work by Lee and Diamond (1986) (using turbulence theory) and Connor (1986a)
(using an extension of the scale invariance properties) a form for x is derived which increases
with shear. However, numerical simulation by Hamaguchi and Horton (1990) indicates a
positive dependence on L;. The discrepancy is associated with an approximation in the Lee
and Diamond (1986) and Connor (1986a) works and the majority of subsequent improved
calculations predict y; to increase with Lg. Terry et al (1988) considered the higher radial
eigenmode numbers, ! and found that while y ~ 1/L; for [ = 0, for higher I, x; has a
positive scaling with Lg, in agreement with numerical simulation. Furthermore, the transport
is predicted to be dominated by the higher / eigenmodes as a result of their greater radial
mode width.

Horton et al (1981) and Guzdar et al (1983) consider the mode in toroidal geometry
where it is found that unfavourable curvature replaces the acoustic wave as the main driving
mechanism. The mode then has a different spatial structure and becomes more ‘ballooning’
in nature. Using a fluid picture (e.g. Horton ef af 1981) one finds modes poloidally localized
in the region of unfavourable carvature with a maximum growth rate

Y fre Ty 2.1.7)

*1

The threshold in #; is determined by Landau drift resonances (Romanelli 1989):

)t € <02
%‘L+um—M) & > 0.2. (2.1.8)

A quasilinear estimate of the resulting ion heat transport (Horton et af 1981) vields

2
~BSE g L i, (2.1.9)

Xi I, s

The two distinct mode structures lead to a natural categorization of the instability into
either ‘slab’ or ‘toroidal’. As shown in the work by Horton ez af (1981) the theories apply
in two different regions of parameter space. In particular,

L < -g => slab theory applies
R
L > 7 => toroidal theory applies . (2.1.10)

This may lead to complications when comparing theoretical predictions with a given
tokamak because at the centre (where the shear length is typically very long) a toroidal
theory applies and towards the edge (with shorter shear lengths) slab theories may be more
applicable.

Consideration of toroidicity introduces a further complication—the trapped particles
which exist as a consequence of the inhomogeneity in the magnetic field. For long-
wavelength perturbations such that @ < w,; < wy; (where @y and wy; are the ion diamagnetic
frequency and bounce frequency respectively) trapped and passing particles have different
behaviours (Kadomtsev and Pogutse 1971) and this gives rise to a new class of instabilities,
cailed the trapped-ion modes, which can be driven unstable by the ion temperature gradient.
These modes can be categorized according to the value of n; (Biglari et al 1989). For
no< g ion collisions are stabilizing and the mode is destabilized by electron collisions.
Kadomtsev and Pogutse (1971} analyse this mode using a model involving trapped and
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passing electron and ion fluids. In the limit ve/e 3> /€y they derive the following
complex mode frequency for the long-wavelength ‘dissipative’ trapped-ion instability:

—+i =,
141 45_l_(1+17)2 Ve
For increasing collisionality the mode is stabilized. In fact, inclusion of passing ion Landau
damping in the analysis leads to the stability criterion (Kadomtsev and Pogutse 1971)

po YO v & ol @.1.11)

1/3
2052 (-”E) T|m — ng| (2.1.12)
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where m and n are chosen so that [m — ng| € 1. Using x; ~ /€y /k}_ (where the /e
factor represents the fraction of trapped ions) yields

2.2
C,
i~ 5255 2.1.13)

As 7; is increased above the value of ;—‘ the mode characteristics alter. The most significant
change is that ion collisions now become destabilizing, tapping the energy source of the ion
pressure gradients (Biglari et al 1989). Finally, at large n; (Z0(e~"/2)) the mode becomes
independent of particle collisions and is fluid-like in nature.

We consider three cases of the WT; instability (slab, toroidal and trapped ion) in
the following three subsections (respectively). In each case we will discuss the stability
thresholds and give expressions for the thermal diffusivity. As noted in the introduction,
these have the form

,u] /zTe3/2

L,B?
where F is a function of the dimensionless variables of the equilibriura. We shall therefore
quote values for F in this section, rather than x;. The results given are for a plasma with a
singly charged ion species with no impurity present. Impurities can be taken into account
by following the prescription derived by Mattor (1991) who demonstrates that one should
replace the ion density scale length with that of the electrons.

¥ =3.23 F(m.t.5,9,€n,...) 2.1.14)

2.2. Slab VT; mode

‘We now consider recent developments in the theory of the VT, mode in a slab geometry.
Before transport due to this mode can be addressed one should first determine stability and
this is governed by the value of 5;. For large »; (> 1.) the mode is unstable and there are
several theories which calculate 7. As noted in (2.1.3) earlier collisionless theories found

e = 0.9 (22.1)

but several, more recent, theories obtain modifications to this. Thus work by Hassam et
al (1990) shows, using a fluid treatment, that very long wavelength modes (kjvmi < vi)
behave collisionally close to marginal stability, and the threstold is lowered to

o= %. (2.22)

The above two results imply that flat density profiles (such as those observed in H-mode
plasmas) should be very unstable. This is apparently in contradiction with the observed
good confinement properties of H-mode plasmas. However, when L,/L; = 1 the instability
criterion becomes a condition on VT rather then 1;. For example, in their analysis of
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flat density profiles Hahm and Tang (1989) find that the critical temperature gradient for

stability is
1 3 [z @2+
LN 3 2.2.3
(Ln)c A A > @23

where { represents the radial mode number which has been excited. In the case of an
inverted density profile (i.e. one in which the density increases towards the edge) Hahm
and Tang find that for instability one requires ; < 1., where

ne=—(1+7). (2.2.4)

The use of a fluid treatment to obtain this result is justified as the real part of the mode
frequency does not go to zero at marginal stability.

Using weak-turbulence theory it has been shown (Mattor and Diamond 1989) that close
to the threshold for linear stability the value of y; is much lower than would be obtained
from an extrapolation of the results of strong turbulence theories (valid at much higher ;).
This result leads to the conclusion that it is not the threshold for linear stability which is
important; rather one should use the threshold for soong turbulence (Mattor 1989). This
leads to a slightly higher ‘effective’ threshold of

e~ 12 (2.2.5)

which might be more relevant for 2 marginal-stability condition.

Let us now turn to the ion thermal conductivities which are predicted to exist if the
plasma is unstable to the slab-like n; mode. Early work of Connor (1986a) and Lee and
Diamond (1986) obtain expressions for x; which increase with the ‘shear” parameter L, /L.
In particular, Connor (1986a) uses the scale invariance properties of ‘the fluid equations
describing the n; mode in the limit L, /L, < 1, mL,/Ls 3> 1 to derive

L
F=g2ph? (2.2.6)

where g is a numerical factor. Lee and Diamond (1986) explicitly calculate saturated
turbulence levels in the same limits as those considered by Connor. From these they derive

Ly
F=[C)PI+ m)/r]zckypaL— (2.2.7)

where C(n;) = (m/2) In{1 + ;). Taking kyp; = 0.3 and bearing in mind that C(Re) varies
slowly with n;, this result is very similar to that obtained by Connor.

Subsequent numerical analysis of the fluid equations by Hamaguchi and Horton (1990)
shows that an inertial term dropped by Connor (1986a) and Lee and Diamond (1986) can
be important. In fact, using numerical simulation to retain the terms which were dropped
in the above two calculations gives a decrease in y; as L,/L, is increased. In particular,
they derive

1 i Ly
F= ;(Ui — Nie) €XP (_SL—S) : : (2.2.8)

by a careful scanning of the parameter space. The dependence on L is taken from the
numerical solution. However, the choice of the linear scaling with n; — . is biased by
a mixing-length theory that was also described in this work. Although their numerical
work is not in contradiction with this scaling, it does show that higher powers of #; — 1,
(up to about 1.5) could produce a tolerable fit. The authors state that one can also fit the
numerical results with an (L,/L¢)~7 scaling (with p = % for L,/L; < 0.1 and p =2 for
Ln/Ls = 0.5).
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As discussed in the overview, Terry et al (1988) show that a positive scaling of x
with L; is obtained by considering the higher-order radial eigenmodes. Furthermore, these
higher-order modes are predicted to dominate the transport,

Following Hamaguchi and Horton, this decrease of yx; with shear is a common feature
of subsequent heat diffusivity calculations. For example, using gyrokinetic equations and
mixing-length estimates of the transport, Mattor (1989) calculates values for y; in the limits
mi = ne and 7 3> n.. Using the trends from these two results and numerical studies, the
following fit for F is derived:

LN/ \%? \
= 0. — —1.2)"°. 2.
F 0037(Ln) (I+r) (i —1.2) (2.29)

This gives a stronger 1; dependence than that predicted by Hamaguchi and Horton (1990)
but the dependence on the shear is consistent with their alternative (power-law) shear scaling
(for L,/Ls; = 0.5).

Hassam et gl (1990} investigate the properties of the n mode close to threshold. As
discussed above, the plasma appears collisional for long-wavelength modes (kyuyg; < vy;) and
there exists a [ower threshold than for the shorter-wavelength modes. It is found that these
long-wavelength modes contribute relatively little to the transport in the region % <5 <09
(i.e. the region unstable to long-wavelength modes but still stable to the short-wavelength
modes). Above 7 = 0.9 the short-wavelength modes become unstable and the transport
increases but is still relatively low up 1o 5; ~ 2. Once 1, exceeds 2 the transport becomes
very large indeed. This is similar to the results of Mattor and Diamond (1989} obtained from
a weak turbulence theory close to threshold. Using mixing-length arguments the following
expression is derived for these long-wavelength (collisional) modes when L, /L, <« 1:

AN )
F= h(m)rL—Z“ (—‘;—") 2> > 2 (2.2.10)
n 13

where vy is the ion—ion collision rate. The form factor % is a function of s which satisfies
h(-37=) = ( and rises monatonically with #; to be of order unity at »; = 2. The shorter-
wavelength modes contribute to the thermal diffusivity through the (collisionless) expression

F = 1.4g(n;, Ln/Ls)T™3? 2>7n>09. 2.2.11)

A numerical scan of parameter space indicates that, for L,/L; — 0, g(m) < 0.12 for
m < 2. Comparing the two transport rates in the region 0.9 < 5 < 2 indicates that the
collisional version will dominate if

Lz Vthi
UﬁL—é g 1: . (2.2.12)

Unfortunately no scaling of the form factors is given, merely their maximum values in the
range 1; < 2 (as quoted above). However, a diagram of numerical values of x; as a function
of #; shown in this paper indicates that the collisional version scales like ~ {1 — %)2 and
the collisionless case like ~ (7; — 0.9)!5.

To conclude this subsection on the slab-like modes we mention a 3D simulation of
1 turbulence performed by Kotschenreuther (1991} in which the gyrokinetic approach is
compared with the fluid one. No scaling of x is given but it is interesting td note the
observed relation

xi]dnetic ~ % xﬂuid {2.2.13)

i
To sumimarize, early heat diffusivity caleulations predicting a rise in y; with increasing
shear were shown to be in error. More recent theories retain important physics which
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has been omitted from the early ones to derive scalings of x; which decrease with shear.
This trend is also observed from the higher-order radial eigenmodes. These more recent
theories are resonably consistent in their shear scaling, with x; ~ (Ls/L,}?. Turning to the
dependence on #; there seems to be no one scaling common to all slab theories. All the
theories which we have studied here predict an increase of x; with ; but the rate of increase
varies: linear for fluid turbulence close to threshold, quadratic for fluid turbulence far above
threshold and cubic for gyro-kinetic theory close to threshold. Strictly, fluid theory is not
valid close to threshold, in which case the cubic scaling predicted by the gyrokinetic theory
is more applicable. Such a strong dependence of the transport on the drive for the turbulence
suggests that plasma profiles may be held at marginal stability. Far above threshold, fluid
theory is accurate and then we expect x; ~ niz.

2.3. Toroidal VT; modes

In recent years there has been an increased effort on transport coefficients due to 3
turbulence with the toroidal effects included and there have been many modifications to
the original work of Horton et af (1981). We first consider the thresholds for the onset of
the turbulence.

Dominguez and Waltz (1988) analyse the linear stability thresholds in the fluid limit for
flat density profiles. Although the validity of the fluid limit may be questioned for threshold
calculations, this work is important as it demonstrates that stability criteria on 1; become

--.stability criteria on (L7i/R) in the limit of a flat density profile (as in the case of the slab
model discussed in the previous subsection).

In order to calculate the stability threshold one should strictly use kinetic theory as, for
example, in the calculation of Biglari er ol (1989). They consider both peaked and flat
density profiles separately. In the case of a peaked profile they apply the ordering

WOpe, O B> Wi > g > O, Bs (23.1)

where wyj, @y and wq are the species bounce, transit and magnetic drift frequencies,
respectively. The first of these constraints {(wye, Wi 3> w4} is easily satisfied while

R
Wy > g = Ly < 03 - (2.3.2)
and therefore sets the limitation that the density gradient should not be too flat:

1
@ > Wi, g = kapi > “q— (2.3.3)

This is a severe constraint, particularly close to the plasma centre where g approaches unity.
The result of such a constraint is that the lon transit resonance can be neglected, but as
shown by Romanelli (1989) this resonance has a small effect. There is, therefore, some
justification in ignoring it. The mode frequency, w is ordered like wy so collisions can be
neglected if

= qkep; . (2.3.4)

With these constraints the following conditions lead to instability:

Vi < = Vg <€

Ly (L
<0 or m>2/3 and bk L R (et £ (2.3.5)
R R ),

where (L1i/R); is some critical value obtained by a numerical solution of the dispersion
relation.



Survey of theories of anomalous transport 727

The above theory does not apply to a flat density profile because of the condition
wy > wy which has been applied. TIn this limit Biglari et af dernonstrate that the
only relevant stability parameter is (Lyi/R). Numerically, for by = &)L; = 0 (where
2b) = (k1 5;)%) they find

% >0.35 (2.3.6)

for stability in a plasma with a flat density profile. In this case they give the stability diagram
sketched in figure 1, valid for all L,/R. The fluid model of Dominguez and Waltz (1988)
(which is in good qualitative agreement with Biglari et al 1989} suggests that increasing
&) pushes the stability boundary to the left as indicated by the arrow in figure 1.

LfR 4
increase by

by, =0

unstable

stable

-1 stable

unstable

Figure 1. Marginal stability plots for the toroidal ion temperature
gradient mode of Biglari ef al (1989).

Romanelli (1989) derives a threshold for #, by solving the gyrokinetic drift equation
numerically, retaining the w,/w resonance. Using a fluid limit of the equations, Romanelli
demonstrates that w ~ &5’ Zw*i. With this ordering, the neglect of collisions requires

gk 0
Vi K w . . (2.3.7)

This is therefore a weaker constraint on the collisionality than that of Biglari ef a/ (equation
(2.3.4)) if the density scale length is short. Solving the gyrokinetic equation numerically
and using a fitting procedure, Romanelli then gives a critical n; of

1 €, < 0.2
e { 1+2.5(¢, —0.2) én > 02 (2.38)
as quoted in (2.1.8). For ¢, 3 1 (i.e. the flat density profile case) this result becomes
L, ) L,
n). =% 239
(LTi . R . (239

or simply

Ly _ |
(T)c ~ 04 (23.10)
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which is similar to that given by Biglari et al in (2.3.6).

The critical ;. given by Romanelli (1989) in (2.3.8) is mdependent of both shear and
safety factor. Guo and Romanelli (1993) investigate the dependence of the threshold on these
using a numerical calcolation of the ifon gyrokinetic equation in ballooning space. Trapped
electron effects are not included and circulating electrons are assumed to be adiabatic. For

wavelengths of the order &y, =~ e}/ 4 they give the following fit to the numerical results:

Thio = { 12 En < Enc (2.3.11)

%(1+r-l)(1+25/‘?) €n €p > €nc
with
. 0.9
T A4+ +2s/g)

It is interesting to note that in the slab limit (s/g > 1) one recovers the scaling of Hahm
and Tang shown in (2.2.3). Support for this expression is alse provided by the work of
Xu and Rosenbluth (1991) with their gyrokinetic particle simulation code. They model
the linearized gyrokinetic equation for circular flux surface equilibria in the ballooning
limit and investigate the dependence of the threshold on tokamak parameters. Full trapped
particle (ion and electron) dynamics are retained. In particular, for t =5 =1, g = 2
they obtain €%, = 0.21 for ksps = 0.4, while the fit of equation (2.3.11) gives ef; = 0.19.
Xu and Rosenbluth do not distinguish between trapped-ion modes and the circulating ion
mode (discussed here). However, the insensitivity of the Xu and Rosenbluth result to the
ion collisionality in this parameter regime implies that it is the circulating mode which is
studied. A recent numerical treatment by Garbet et @l (1992) derives a critical temperature
gradient €3; = 0.01 for the circulating mode which is much below the result given here. In
fact, the mode is stable for typical tokamak parameters. However, they do find a trapped-ion
branch with stability properties very similar to those described by (2.3.11); this mode will
be discussed in the next subsection.

The toroidal thresholds discussed so far assume circular flux surfaces, An investigation
into the effects of shaping has been made by Hua et al (1992) who extend the model of
Xu and Rosenbiuth (1991} to investigate the effects of triangularity and elongation on ITG
mode stability. The temperature gradient threshold is then found to be relatively insensitive
to triangularity but has a significant dependence on elongation. In particular, the following
expression is derived:

(2.3.12)

1 1—M
< -
=TT (2.3.13)
where M increases with the elongation, «, as
1
M= 2—q=\/25 —14+2(1—35)2. (2.3.14)

In the limit & — 1 this expression depends on 7 and s/g and, although the magnitude is
similar to that obtained by Guo and Romanelli (1993), the scaling is slightly different.

Trapped-electron dynamics have an interesting role to play in the stability analysis and
can give a significant modification to figure 1 (Romanelli and Briguglio 1990; Nordman
et al 1990; Guo and Romanelli 1993). For flat density profiles stability is not affected
significantly. However, for low ¢, values, the trapped-electron dynamics destabilize the
mode and, as illustrated schematically in figure 2, no stable window exists for peaked density
profiles. Increasing electron collisionality (v = 1) suppresses trapped-electron effects and
the stability diagram returns to that shown in figure 1.
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unstable

Flgure 2. Marginal-stability curves in the n—€, plane for the ITG mode
’ including trapped-electron effects. The full curve is for v,e = 0 and the
% broken curve neglects trapped electrons.

This completes our survey of the thresholds and we turn now to recent predictions of the
ion heat transport. Biglari ez al (1989) derive an expression for the thermal diffusivity, xi,
using the fluid equations and employing mixing-length estimates. The fluid approximation
requires ; 3> 1 and then

gy (1+m)
F = (kgps) (S) a (2.3.15)
An upper bound on kgo; of (1+ 1)~/ (as obtained from a linear analysis) can be used
to obtain a simple expression for the upper limit of x;. A gyrokinetic simulation of the
fluctuation spectrum by Sydora ef af (1990) (and supported by the more recent simulation
of Xu and Rosenbluth 1991) shows that the important range of kep; is 0.1 < kg < 0.5,
suggesting that this upper bound on y; could be close to the actual value.

It is interesting to note that Biglari er af also give a scaling for the electron thermal
diffusivity, x., which results from the electron transport caused by ion-pressure-gradient-
driven turbulence:

2.2 3/2
o 2 Y2 C5 S 1+11i) q 1 5316
Yo € thepy) Lﬁ’thlzue( T s \1401/m./ (2:3.16)

The last factor on the right is a cormrection factor which has been added to the Biglari
result to allow it to be extended to a low collisionality regime, representing the transition
from dissipation due to collisional effects to dissipation due to the magnetic drift resonance
{Romanelli et of 1986). They also give the particle diffusion coefficient, D

D~ x (2.3.17)

where they take the non-adiabatic part of the electron response to the ITG driven potential
fluctuations to be due to dissipative trapped-electron dynamics.

Guo et af (1989) use the fluid limit of the electrostatic gyrokinetic equations in their
analysis and consider flat density profiles so that »; 3 1. x; is calculated from the estimate
v/ ki with ey « 1 assumed in calculating y. Expressions for x; are then calculated in two
different wavelength regimes {a) the weak ballooning limit (b < e}/ 2) and (b) the strong
ballooning limit (1 3> by > e}/ 2). A maximum value of x; occurs for the by for which
these match leading to

_ &‘ (1+2q2)3 1/4
F —O.G(R ) [W—} . (2.3.18)

Strictly, g here is the cylindrical g, but for large aspect ratio there is no need to distinguish
between the two.
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Hong and Horton (1990} solve the 2D fluid equations describing the toroidal #; instability
and use mixing-length estimates to derive the ion thermal diffusivity. The fact that fluid
equations have been used implies that the results can only be applied when n; is far above
threshold. For o;/L, < s < 2¢, they derive

L, 1 172
and for very low shear (s < ps/L,) the radial mode width Ax ~ L, thus giving a Bohm
scaling for x;
xi =t — no)pscs . (2.3.20)
Using a modified mixing-length approximation (Horton et af/ 1981), Dominguez and
Waltz (1989) derive the following scaling for F

Cj q L,, LT Lﬂ
F =353 Sl =-=0|1l-—= 2.3.21
’ (klps) sLny L ( 7 | @320

where @{x) is the Heaviside function and

1 [61 Cz] '
—_—=|, (2.3.22)
L%i R Ly dimx
with ¢z ~ 1 and ¢; in the range
Lc
0.2 ?"' <03 _ (2.3.23)

The numerical coefficient, ¢;, is taken to be 0.3 and £: p; ~ 0.3. Again, the result is only
applicable to plasmas in which n; 3 1.

The earlier work of Horton et al (1981) has since been extended by Hong et al (1986)
to include kinetic effects. They use gyrokinetic theory for the ions and adiabatic electrons,
and consider the frequency range @ > @y > kyvy, which imply

z\1/2 s\ 1 g\
€ & (5) and (3) ( ; "’) <1 (2.3.24)
n

i.e. the density profile must not be too flat and the shear must not be too large. With these
restrictions and considering 7; = 2, Hong et al derive the following scaling for F:

-1
i 1+
F=2%(1t")ko [1 -(2;;2) kg} (2.3.25)

(2.3.26)

where

(23.27)

ko = [ 20— 260) + {01 — 26,)° + 2enl(1 + na/r]}ﬂuz
T 3L+ m)/x '
Romanelli (1989) uses a kinetic ion response without expanding in wy/w and eniploys a

quasilinear mixing-length estimate to derive an expression for x;. Because kinetic effects are
kept, the theory is valid down to very low 1, close to the threshold value. The calculation

of the ion energy flux assumes

er <1 and N > 26, {2328
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together with condition (2.3.7). Taking k302 = 0.17~!, Romanelli obtains

12

€n
F =140 — o) (23.29)

with #;; given in (2.3.8). In a later work Romanelli and Briguglio (1990) use kinetic theory
to investigate the micro-instabilities that are driven by trapped electrons and ion temperature
gradients. The expressions for the fluxes are rather complicated and we refer the interested
reader to appendix C of the reference.

A recent article by Romanelli er af (1991) describes a kinetic theory of the ion
temperature gradient driven mode in the limit of long wavelength, kyp; ~ er. They
perform a calculation in toroidal geometry and find that three modes are important at these
wavelengths: a slab-like mode and two toroidal modes. The most important toroidal mode
propagates in the ion diamagnetic drift direction (and will be referred to as the ion toroidal
mode). This mode is shown to be unstable whenever a parameter A,

k "
= féf‘ ] (2.3.30)
T
exceeds a critical value, A., where
172 1+t
=3 (?1 - (Z/m)) | .

This can never be satisfied if 7; < 2 and therefore the toroidal ion mode is stable for all
wavelengths in this case. For values of n; > 2 the modes with wavelength short enough
such that A > A; will be unstable. There can be significant transport from this ion toroidal
mode and in the fluid limit

A1 (2.3.32)

the following thermal diffusivity is given:

1 gm
J_r3/° e (2.3.33)

The second toroidal mode propagates in the electron diamagnefic direction and is
therefore referred to as the electron toroidal mode. This is found to be marginally stable in
the absence of kinetic effects. Inclusion of a trapped-electron response can drive this mode
unstable, though it is less important for transport than the ion mode and no expression for
¥i is given. Trapped electrons can have a major influence on the stability of this mode for
tight agpect ratio (¢ = 0.3) and low collisionality v, < 1.

The two modes described so far are peculiar to toroidal geometry and there is no
analogue for them in a slab geometry. The third mode which is found does have a slab-like
analogue and is therefore termed the slab mode. This is considered in the long-wavelength
limit, with the ordering ks g f;e;" % (i.. shorter wavelengths than were allowed for the
toroidal calenlation). The growth rate is derived far above threshold allowing the following
mixing-length estimate of the thermal diffusivity to be made:

N i/2
F o 0.5% (”‘SE") . (23.34)

The assumptions made in deriving this are

Ta'Plerst) K1 & [T Plepst)’]™* (2:3.35)
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where the upper bound has been used to estimate ks in calculating x;, and that the density
profile should be sufficiently flat

52\ £/
> (Trl ,2) e 2336)

Nordman et al (1990} adopt a fluid approach (claimed to be in close agreement with
kinetic theory) to analyse the »; mode, taking into account non-adiabatic trapped electron
dynamics. The resulting quartic dispersion relation has two branches which can be unstable
simultanecusly (as discussed earlier)—a collisionless trapped-electron mode and a toroidal
m mode enhanced by trapped-electron dynamics (see figure 2). A modified saturation

level is derived by balancing the linear growth (~ y¥3n) against the convective nonlinearity
{(~vg.Vin, where vg is the £ x B drift) leading to

e y 1
— = . 23.3
Ts tye Kx Ly ¢ D
Using this in a quasilinear calculation of the ion heat flux then vields
1 2 10 2 y3/k2
i=—(m—iz=+ 0 - fy— = filh E: 2338
Xi o, {UJ {3 +( ft)gren+ Sft l}:' (@, +5/305)* + 12 ( )

where f; is the trapped particle fraction and A; is a function of the mode frequency @, and
growth rate y given in (16) of Nordman et al (1990). Determination of ¥ and w, from the
dispersion relation then yields an ion thermal diffusivity which compares well with their full
numerical simulation. It is interesting to note that predicted radial profiles of x; and yx. for
a typical JET shot rise towards the plasma edge out to r/a ~ (.9 in qualitative agreement
with experimental trends. Over the outer 10% of the plasma, however, both x; and x. fall
sharply towards zero in contradiction with experimental measurements. Another interesting
feature of this theory is the heat pinch (given by the term in curly brackets of (2.3.38))
which is proportional to the density gradient. A later work (Weiland and Nordman 1991)
based on the same model applied near the tokamak edge (where €, < 1) produces similar
% profiles. Other features of this €, < 1 limit are:

(1) stabilization of the most dangerous mode {accompanied by a corresponding decrease in
x) when a power threshold is exceeded (this is interpreted as a possible L-H transition
mechanism) and

(2) stabilization of the most dangerous mode at tight aspect ratio.

Finally we discuss the work of Kim et al (1991} who use neoclassical fluid equations.

The frequency ordering that they impose (i.e. @ ~ @, < wy;) leads to the restriction

262 oo,

> ~02. - 2.3.39
q V2 ¢ )

The ion collisionality, v, is limited to v, < €~%/2 because of the restriction that the static
neoclassical viscous damping frequency
_0.78¢V2y;
Hi= 1+ 0.44v,

satisfies ; <& wypj. The fluid approach requires that »; must be far above threshold; an
upper bound on x; is given as

(2.3.40)

2
X5 < 23w (L + 1) (2341)

i.e. they find that the transport is enhanced above neoclassical by a factor of the order
(X +m).



Survey of theories of anomalous transport 733

2.4. Trapped-ion modes

We first discuss the threshold conditions for the onset of these modes. The stability of the
ITG family of instabilities including trapped-ion modes, has been investigated by Garbet es
al (1992} who derive a dispersion relation which describes three modes. Two of these are
associated with the circulating particles and correspond to the 7 mode and an interchange-
type mode; the third is a trapped-ion mode. The dispersion relation for this mode is solved
numerically in the collisionless limit and within the framework of the ballooning formalism.
Curves of marginal stability are then drawn in the L,—Ly; plane. A sketch of their results
for the trapped-ion modes is illustrated in figure '3 for two values of the toroidal mode
numnber, n, for a typical JET shot {ie. go = 1.5, 7. =T = 1750 eV, By =275 T
and dg/dy = 0.7 Wb™!). For low positive n; they observe that there exists a critical 7;,
(e.g. Me = % for n = 30 or ;. = 1 for n = 150), below which the trapped ion mode is
stable. For higher 5; they observe that the stability criterion becomes a threshold on the
ion temperature length scale, Lr:, rather than on ;. This corresponds to Lyi/R = 0.17
for n = 30 and Lr/R = 0.1 for n = 150. This plot has similar characteristics to the
conventional 1; mode and thus comparisons with this trapped-ion mode are useful. Garbet
et al calculate the critical Lri/R for the n; mode of the circulating particles using the same
parameters as were used for the trapped-ion mode. They find a value of (Lyi/R); ~ 0.01
and conclude that the trapped-ion mode is more important in tokamaks than the n; mode
(this critical temperature gradient is very much below those which were described in section
2.3). The critical value of the temperature length scale, below which trapped-ion modes are
unstable, is dependent upon the toroidal mode number, #, with lower values of # having
higher thresholds.

A A

—= n=150
..... n= 30
1.0

unstable

» LR

-0.5 T

unstable

Figure 3. Marginal-stability plots for the trapped-ion mode of Garbet
et al (1992).

The threshold for instability to the trapped-ion modes has also been calculated for the
collisionless mode by Dominguez (1990). As well as the collisionless assumption, the
calculation is performed in the limit of large aspect ratio, requiring

ve K1 ekl 24.1)



734 J W Connor and H R Wilson

The form of the threshold for instability is

€ < f () 24.2)

where f(n.) is a complicated function which can be found in the reference. By controlling
1. Dominguez claims that it is possible to move the threshold and help stabilize the trapped-
ion mode.

We now turn to the various trapped-ion transport models that have been proposed
recently. We begin with the paper of Diamond and Biglari (1990} in which eariier work
on dissipative trapped-ion convective cell turbulence driven by electron collisions {Cohen
et al 1976) is reconsidered. In the work of Cohen et al, the two-dimensional E X B
advective nonlinearity was dropped and a one-dimensional nonlinear ‘shock’ term retained.
This model led to a diffusion coefficient, D, which scaled as D ~ T%/2, corresponding
to very large anomalous transport, particularly at high temperatures. However, when the
temperature is high the E X B term is the dominant nonlinearity and the calculation of
Cohen et al becomes invalid. Such a two-dimensional mechanism is better able to transfer
the unstable Auctuation energy to where it can be dissipated than the one-dimensional version
and leads to a steady state with less transport. The condition that the E X B nonlinearity
dominates over the shock nonlinearity is

12

m iR .

Vo & ~/25K2 (*nf') ps:]#q , (243)
L

where equal temperatures of the ions and electrons have been assumed. Diamond and
Biglari then find that

| po 3 &P (m\" g _ 244)
242 5% \my €nVie

Expressions for the electron thermal (.) and particle (D) diffusivities are also given in
terms of x, as
Ko = %D ™~ ¥ (2.4.5}
The trapped-ion temperature-gradient-driven mode is considered using a two-point
renormalized (clump) theory by Biglari er al (1988). In clump theory the fact that the
nonlinear interaction of modes can produce fluctuations which are not in phase with the
potential (ie. incoherent fluctuations) is considered. The word ‘clump’ describes the
phase-space granutation resulting from turbulent mixing (i.e. ‘clumps’ of plasma are formed
which, to a certain extent, behave as a single large particle). The mode, which is shown
to propagate in the ion drift direction, is driven by unfavourable magnetic curvature, unlike
the ‘conventional’ slab »; mode which is driven by a sound wave and propagates in the
electron drift direction. Whilst the ions are treated using clump theory, the electrons are
assumed to be sufficiently collisional that electron clumps are not formed. This imposes
the constraint on the electron collisionality, v,., that

i’ . 2, 1/2
b 3 = 205)q 7 (&) ( o 1) 2.46)
2eltse, T \ 1 i
where ;. is the critical #; for the onset of the instability and is given by
me=(3—E) 24.7)

with E the ratio of the ion kinetic energy to the ion thermal energy. Other frequency
orderings impose the following constraints:

(2et) %,
Vidy Vie K 1 Whi, Wi S Oy => kgps K T Wei B g =6, K 1. (24.8)
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These imply that the results are valid for long-wavelength modes in low collisionality
plasmas for which the density profile is not too flat. The following expressions for the ion
particle (T;) and thermal ((;) fluxes are given:

(o)~ () () @

_.._m__ _ . dIn ni/dr
8 (ﬂic | @/ | 1) i ( | w/wg; | dT3/dr ) (2.4.9)

where | w/wg | is constrained to lie in the range

@w

Wy
The lower bound is necessary to achieve nonlinear saturation, and the upper bound to have
nonlinear instability. If we use the lower value then we obtain the following expression for

F:
1 /me\N"? g w2
~ e — — —=1}. 24.11
F '\/5 (ml} €1 Ve (ST) e ( )

The work of Biglari et al (1989), which we considered earlier in relation to the toroidal
n mode, also calculates transport due to the trapped ions. Trapped-ion pressure-gradient-
driven modes are considered both in a collisionless model and a model where a pitch-angle
scattering collision operator is included. The frequencies are ordered according to

2> >1. (2.4.10)

Wi, W 3> Wy >| @ | Zwg. Verr; - (2.4.12)

These imply that the plasma should be of low collisionality:

Vi K 1 (2.4.13)
the density profile should not be too flat:
& K 3 (2.4.14)
and the modes are of long wavelength:
(21¢)/ /%€
ko ps & —-;——" : (2.4.15)

For the collisionless case, a criterion for instability is derived:
2004+ ) (L + 1) - 1
e 72 2¢,
which, when satisfied, leads to the following mixing-length result for the ion thermal
diffusivity:

(2.4.16)

14, 1/2 L\ 172
o 3e € En ﬁ) 4
P (+3)". 2.4.17)

The effects of perturbatively including ion collisions via a pitch-angle scattering operator
are then studied. The dissipative trapped-ion mode was found to be stabilized by ion
collisions when #; = 0 in an early work by Kadomtsev and Pogutse (1971). Here, the finite
m; regime is explored and it is found that when n; exceeds a critical value (i, = %) ion
collisions actually have a destabilizing influence. Thus when

724 14
n > % Vi < g{keps) (Z) (2.4.18)
"
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the mode is unstable and the thermal diffusivity corresponds to

mgt'/?

F= 2J§m . (2.4.19)
This value for the thermal diffusivity is rather high and has a large unfavourable temperature
scaling; the instability is therefore expected to fix the plasma profiles at a level corresponding
to marginal stability. This value for F is also somewhat larger than that obtained by
Diamond and Biglari (1990) for the dissipative trapped-ion mode. In that case »; = 0 and
the electron collisions were the main driving mechanism, whereas here »; is assumed to
exceed the threshold (of %) and the ion collisions also become destabilizing.

A similar result to (2.4.17) is obtained by Biglari and Diamond (1991) when the mode
is analysed with a fluid frequency ordering {(we; 3> |@w| 3> wa > vem). Assuming equal ion
and electron temperatures they derive a fluid model describing the evolution of the density
and temperature fluctuations. The saturated Ievels of density and temperature fluctuations
are calculated from which an ion heat diffusivity is derived, corresponding to

AL/2
F= 2(“"”2‘) (2.4.20)
s
Expressions for the particle and electron heat diffusion are also given:
/2 2.2 S
ps CS
~ e~ A S e, 2.4,
D Xe. .5'2 L%Ueff'e_ nle ( 4 21)

Xu and Rosenbluth (1990) have considered the stability criterion for the trapped-ion
mode and its relation to certain other instabilities. For low-frequency, long-wavelength
modes a general analytic dispersion relation is derived which contains three types of
instability—electrostatic trapped-ion modes (i.e. trapped-ion modes that are electrostatic
in nature), magnetic trapped-ion modes (i.e. trapped-ion modes which have no electrostatic
contribution) and MHD ballconing instabilities. The dispersion relation is obtained using a
variational approach constructed from gyrokinetic equations. It is found that the couplings
between the modes are weak (except for the case of the ballooning mode, where it is found
that the trapped particles are stabilizing). By considering different mode frequency orderings
they separate out the trapped-ion modes and evaluafe thermal diffusivities and stability
criteria for different collisionality regimes. The effects of collisions are incorporated into
the model via a pitch-angle scattering operator but the effects of trapped electrons are not
considered. We concentrate here on the results which they obtain for the trapped-ion modes,
beginning with the electrostatic mode which is considered in the region § < 75 < €™/
when ion collisions are destabjlizing. Thermal diffusivities for two collisionality regimes—
‘collisionless’ and ‘cellisional’ are derived. For the collisionless case, the ion collision
frequency must be less than the drift frequency:

%
vi € a1% - (2422)
where
a; = 0.36 +0.215 — 0.21 (1 + —7—) o o= —qud—ﬁ (2.4.23)
642 dr

and 3 is the ratio of thermal to magnetic energy. The frequency ordering which is imposed
gives the following constraints on the mode wavelength:

T 2el2y 12374
— e K kg ps K
«/Eq ) «/iq

(2.4.24)
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It is shown that a mode driven by ion pressure gradient is unstable for « below a critical
value, ¢, where

17145
_ 2.4,
= T4 7/(642) (24.23)
and the thermal diffusivity in this situation corresponds to
) 3/4 1[2 3/2 172
= V2, "y " g (2.4.26)
[1+ h2(8)11'3f2 Vi
where
h{(B) = s8 —wsind 2427

and g is the poloidal angle.
For the collisional case the ion collision frequency exceeds the drift frequency:

~2q (ko ps)

Ve 3> ) W (2428)

and then the frequency ordering which is imposed leads to the following bound on the mode
wavelength:

EnVy T2
kgps > ———. (2.4.29)
) ﬁﬂiq
The corresponding thermal diffusivity is given by
372 1 an?
F=2/2 _— 2430
(‘L') [1 +h2(6)] Vii€p ¢ )

Although there are similarities, the € dependence, for example, is quite different from that
in the coilisional result of Biglari et af (1989) (see (2.4.19)).
Finally, we turn to the purely magnetic mode where the frequency ordering requires

1/2,, .p1/2
kops > «/56—"6%"— . 2.431)
The condition that the mode be unstable can be expressed as a condition on the collisionality:
e~ 14k,
vt < 5.7V Lp(1 + Bpyp P er)d (2.432)
1-1/26n/

and the resulting thermal diffusivity can be calculated from

a8 (1+35). (2.4.33)

F ~2+/2a
NV T2[1 + B2(B)]

2.5. Conclusions

There is a strong belief that toroidal V7; modes play a role in tokamak transport and
much effort has been devoted to refining the onset conditions and consequent transport
to improve agreement with experimental resuits on x;. Although the scalings for these
theoretical gyro-Bohm expressions for x; have improved through the geometric factors
appearing in the functions F, problems remain. Recent comparisons with JET experimental
data made by Connor ef al (1993) indicate that all the above ITG turbulence-driven transport
theories tend to have a common problem—a failure to reproduce the rise in the ion thermal
diffusivity observed towards the tokamak edge. On the contrary, as a consequence of the
strong temperature dependence associated with their gyro-Bohim scaling all theories here
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predict a fall in x; towards the plasma edge. Current developments in theory attempt to
address this problem in different ways. Hua er al (1992) explain the radial profile by
retaining threshold effects whereas the majority of the theories quoted above are strictly
valid far above threshold. Hua et @/ postulate that in the core of the plasma the density
and temperature are held close to marginally stable profiles and litfle transport results in
this region (typically much less than predicted by the above models). Towards the edge,
boundary conditions (such as the density and temperature tending towards zero) force the
plasma profiles away from marginal stability and so the diffusivity rises to the values typical
of those quoted above. Beklemishev and Horton (1992) claim that one should weight the
heat diffusivity by a ‘density of states’ factor which reflects how closely the mode rational
surfaces are packed. This leads to an enhancement of the thermal diffusivity at the tokamak
edge which may explain the observed increase in y; in this region. Finally Romanelli and
Zonca (1993) examine the consequences of toroidal coupling on the radial structure of ITG
modes, finding a more general class of instability than the ‘ballooning’ type modes which
we have been discussing. These new modes are similar to those discussed by Connor et al
(1993) in that they have a much greater radial extent and may therefore be more important
for transport. No detailed transport calculations have been made but qualitative comments
can be made from the radial structure which Romanelli and Zonca derive. In particular
for low shear values (s < 1) towards the plasma core, the toroidal coupling of the Fourier
modes is very weak (~ e~'/%) and the radial mode width, Ax, is then governed by the width
of the individual Fourier modes. Thus for s < py/L,, as discussed by Hong and Horton
(1990), Ax ~ L, and the transport is Bohm-like {see (2.3.20)). For higher shear values in
the range ps/L, =5 < €,, Ax ~ p; and the conventional gyro-Bohm scaling observed in
the majority of the theories discussed in this section is obtained. For s > | Romanelli and
Zonca (1993) demonstrate strong toroidal coupling of the individual Fourier modes which
again gives radially extended structures with Ax ~ a/s'/?, where a denotes an equilibrium
scale length. Such large structures would be expected to give high Bohm-like transport
and may, therefore, provide an interpretation of the observed increase in x; at the tokamak
plasma edge.

3. Electron transport due to drift-wave tarbulence

3.1. Overview

Electrostatic drift-wave turbulence can be excited by various mechanisms. The basic drift
wave has @ ~ @, and k) p; ~ O(1). Destabilizing mechanisms are provided by collisions,
Landau resonances and trapped particle effects, which must offset shear damping for
instability. Shorter-wavelength electromagnetic fluctuations with &) ¢/wpe < 1 can be excited
by the 7. (or electron-temperature gradient) mode. The presence of such electromagnetic
drift-wave turbulent spectra can produce stochastic transport of test particles, particularly
trapped ones, which is largely independent of the origin of the turbulence—this is discussed
in section 3.2.

In section 3.3 we consider electrostatic electron drift-wave turbulence and transport in
more detail. We concentrate on placing the many contributions on this topic in context,
emphasizing developments over the last fifteen years. As in the case of the VT mode,
the simplest description of the electron drift wave is in a slab geometry, where it is found
that to overcome the damping effect of the magnetic shear it is necessary to introduce a
nonlinear theory; such a mode is discussed in section 3.3.1. We then consider the effects
of introducing toroidal geometry in 3.3.2; as is well known, toroidicity tends to reduce the
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shear damping and thus drive the mode more unstable. Toroidal geometry also introduces
trapped particles and in 3.3.3 we consider the instabilities and transport that are induced by
a trapped electron population. These modes have been studied extensively in the literature
in a variety of regimes, using different mode structures and saturation mechanisms and we
categorize the calculations according to those. We then consider the effects of inverted
density profiles and finally a short-wavelength trapped-electron mode. Section 3.4 discusses
the electromagnetic drift wave, the drift micro-tearing modes and the 7, mode in both siab
and toroidal geometry.

All the transport coefficients in these subsections are of the gyro-Bohm-type, involving
ps or ¢/ay,e (or both) as microscopic lengths as discussed in section 3.5

3.2. General electromagnetic fluctuations

A turbulent plasma in which the electromagnetic fluctuations are sufficiently large can
produce stochastic transport of particles. Three papers by Horton (1985), Parail and
Yushmanov (1985) and Horton ef al (1987) derive the requirements for stochastic motion and
the implications such a motion has for transport levels. They numerically solve the equations
of motion of the particles under the infloence of a model spectrum of electromagnetic
fluctvations and calculate a diffusion coefficient, D. The source of the electromagnetic
fluctuations is not specified although it is assumed that they could originate from drift waves.
The dependence of D on the fluctuation spectrum parameters {e.g. fluctuation amplitude,
power-law index of the wavenumber spectrum, mean phase velocity of the fiuctuations, etc.)
is then studied extensively. It is found that D is relatively insensitive to these properties of
the fluctuation spectrum.

In a random-walk estimate of the diffusion coefficient for a highly turbulent plasma of
the type discussed above, the relevant decorrelation frequency is the circulation {or £ x B
trapping} frequency, £z, defined as

2
Qp = 1% (32.1)

B
where ¢, is a Fourler component of the potential corresponding to wavenumber £ and the
characteristic step length is k_]_'l. Because frapped particles are localized along a magnetic
field-line they do not experience the whole variation of the perturbation along B. As a
result the fluctuations influence the trapped-particle orbits more than the passing-particle
orbits (which will tend to average out the effects of the fluctvations). Thus the dominant
contribution to the transport is from the trapped electrons so that

Q
Yo ~ €22E (3.2.2)
k7
In his analysis, Horton (1985) showed that a condition for such stochastic motion is
.QE ~ Aw

where Aw is the dispersion of the distribution of frequencies of the driving instability. For
electron drift waves
A® ~ e = ki s (3.2.3)
L,
and the wavelength is estimated by

kips~1. (3.24)
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Thus the electron heat diffusivity is given by
¢
1D~ e”zpszf— . . ' (3.2.5)
Although there may be some modification to this through the details of the fluctuation
spectrum, the numerical study described above indicates that their effects will be small.
The regime considered by Parail and Yushmanov (19853) corresponds to shorter-
wavelength modes, with

ki ~ wge/c. (3.2.6)

where c is the speed of light and . is the plasma frequency (the ratio of which corresponds
to the skin depth). They consider that stochasticity occurs when

Qg ~ Choe (327)

where an. is the bounce frequency of trapped electrons. This leads to the test-particle
diffusivity

¢ \? ’
Xem ~ /2 (__) Dpe - (3.2.8)

Wpe
If both parts of the fluctuation spectrum are present with sufficient amplitude to produce
stochastic diffusion a total diffusivity can be written as

2
Xe = €'l {p&iﬁl () + (5—) wbeﬁzta)} (32.9)
pe

where Dy, (o) represents a slowly varying function of the parameter set {«} which defines the
fluctuation spectrum. The D, (@) can be treated as adjustable constants of order unity when
comparing this formula with experiment. It should be noted that, although the diffusion
coefficient was shown to be approximately independent of the fluctuation parameters, it
was also shown that there does exist a significant variation with the magnetic shear. Thus,
the parameters Dy, may only be treated as constant at constant shear. Kesner (1989) has
analysed the shear variation of the ﬁm(a) obtaining the following fit:

D(@) — (0.05 +0.65¢%) B, (o) (3.2.10)

where s is the local shear on the outside of the torus (ie. at @ = Q).

The work described so far considers a collisionless plasma and assumes that the trapped-
electron diffusion is dominant over that of the passing electrons. If the collisions of
electrons with ions are included then trapped electrons are converted to passing at a rate
which is proportional to the effective collision frequency of the electrons. This implies that
collisions may influence the diffusion coefficient as discussed by Kim et al (1990), where the
collisional modifications of the Horton ef al (1987) resuit are calculated. A similar approach
to that of Horton et al (1987) is used to derive (numerically) an approximately linear
dependence of the diffusion coefficient with the collisionality. Thus Kim et o/ generalize
the wark of Horton et al to

2 2
Cs ¢ ~ c n
Xe = €723 p2 = Di{e) + (—) @pe Do) T + Ve (—) Ds(e) . (3.2.11)
L, Wpa Woe

The new final term is of particular importance at the edge where the collisionality can be
high.

Using quasilinear theory Parail and Pogutse (1981) derive an upper bound to the electron
thermal diffusivity caused by electromagnetic turbulence which is assumed to exist on
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a length scale of the collisionless skin depth (¢/wpe). Two expressions for the thermal
diffusivity are given for odd and even modes respectively (where ‘odd’ and ‘even’ refer
to the parity of the electrostatic potential about a resonant surface). Both types of mode
are assumed to have the skin depth as their length scale and the difference in the resulting
diffusjvities is due to the different time steps that are attributed to each. This time step, Af,
is derived by assuming that, in a collisionless plasma, the electrons interact with a wave
according to the Landau mechanism, i.e. At ~ 1/kjuye. For the odd modes, the radial
extent of the mode is taken to be ~ 1/ky, so that & ~ s/gR (where s is the shear, ¢
the safety factor and R the major radius), thus leading to an Ohkawa-type scaling for the
electron thermal diffusivity:

2
© ¢ ) Ve
X~ —) —. (3.2.12)
¢ (cope gR

For even modes the average distance that an electron deviates from the mode rational surface
is small and coupling to sidebands needs to be taken into account. This coupling is of order
€? so that the relevant timescale for this case is ~ (r/R)*(vme/qR) (where r is the minor
radius} leading to

2
@ o (LN L P :
( (R) (wpc) R (3.2.13)

If both types of mode exist, then the diffusivity due to the odd modes will usvally dominate
over that of the even modes. However, Parail and Pogutse (1981) claim that the even
modes will, as a rule, be excited before the odd modes and thus x{® will be the relevant
expression. )

Finally, in this subsection we consider the work of Zhang and Mahajan (1988). For
fluctuations with @ < kjvge (where w is the mode frequency) the relevant timescale is
~ 1/kyvpe, thus leading to the result of Parail and Pogutse (1981) described above. Zhang
and Mahajan (1988} argue that for this ordering it is not possible for the electromagnetic
modes to grow in a collisionless plasma, leading them to propose & > kv, as the relevant
ordering. Then the mode frequency w provides the timescale for the turbulence. The precise
form of the mode which might be responsible for the driving of turbulence is not addressed,
but it is assumed that w scales like @,., where

Bue = £ (22) prcy ( LL + E"‘-) (32.14)
with @ and £ constants, i.e. a linear combination of the diamagnetic drift frequency due
to both the temperature and density gradients with the perpendicular wavelength being
~ ¢fwp.. Little is said about the constants « and £ which would be determined once a
specific driving mechanism for the electromagnetic turbulence is given; in the absence of
such a driving mechanism they must be assumed to be parameters of the mode] fixed by
comparison with experiment. The length scale is taken to be the collisionless skin depth,
thus leading to the following form for the diffusivity:

< 1 o : :
Xe=§ (;;;) PsCs (L_Te + -L':) . (3.2.15)

3.3. Electrostatic drifi-wave transport

3.3.1. Circulating electron drift wave in a slab or cylinder. The collisionless electron drift
wave gives rise to a mode (the ‘universal mode’) which, in a slab geometry, is always
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unstable in the absence of (magnetic) shear. In such a case, the radial eigenmode equation
possesses a potential well around the maximum density gradient. With the introduction
of shear the depth of this well is reduced until, for sufficiently large shear, the potential
well becomes a potential hill. A localized mode is no longer possible and it was thought
that the universal mode could not exist in such a sheared plasma. However, Pearlstein
and Berk (1969) pointed out that a mode whose boundary conditions (far from the mode
rational surface} are those of an outgoing wave (i.e. a wave which takes energy from the
mode and dissipates it at large distances from the mode rational surface through some
mechapism, e.g. ion Landan damping) is an acceptable solation. Thus, in their calculation,
there is a competition between the rate of energy radiated by the mode (which increases
with shear—the ‘shear damping’) and the driving mechanism of the instability. For low
values of shear (but stili typical of tokamak plasmas) the driving mechanism ‘wins’ and the
mode is unstable. Higher shear stabilizes the mode.

An approximation made in the work of Pearlstein and Berk is to expand the plasma
dispersion function for (w/k Ume)? < 1, thus giving rise to an adiabatic electron response.
Later work by Ross and Mabajan (1978) and Tsang et al (1978) solved the dispersion
relation numerically without this approximation and found that shear has a greater stabilizing
influence on the “universal mode’ than predicted by the perturbation approach of Pearlstein
and Berk. In fact, they found that typical tokamak plasmas had sufficient shear to stabilize
the mode. The problem with the Pearlstein-Berk calculation is the breakdown of their
approximation near &y = 0; the solution in that region has a strong stabilizing influence on
the mode.

So far the description of the ‘universal mode’ has been limited to that of linear theory.
Hirshman and Molvig (1979) retain the nonlinear effects arising from the B x B drift to
study the effects of electrostatic turbulence on the mode stability. They argue that the effect
of stochastic diffusion of the electron orbits due to this turbulence will generate a finite value
for &y (i.e. effectively removing the long wavelength, stabilizing part of the spectrum). Thus
it is expected that the turbulence will destabilize the mode relative to the linear predictions.
A ‘nonlinear’ dispersion relation is derived which demonstrates explicitly the destabilizing
nature of the turbulence, indicating that quite low levels of turbulence (typically below those
expected to exist in tokamaks) are sufficient to drive the mode unstable. In the presence
of turbulent fluctuations shear retains its ability to stabilize the mode and there exists a
competition between the driving of the turbulence and damping from the shear, with the
mode being stable at sufficiently high shear. Solving the dispersion relation at marginal
stability determines the diffusion coefficient, D:

3D 45 ap sp[l+2] %02
~ = A - =5 3.3.1
Xe 5 2 PB T 2 L. ( )

3
App = (-Ei) (%) . (332)

Diamond and Rosenbluth (1981) reconsider this problem and find that a low level
of turbulence is actually stabilizing. However, at higher levels, more typical of tokamak
plasmas, the turbulence is destabilizing in qualitative agreement with Hirshman and Molvig
(1979).

with

3.3.2. Slab-like drift wave ir a tokamak. In a slab or cylinder there is a competition between
the electron drive (due to Landau resonance in a collisionless regime and collisions at higher
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collision frequency) and shear damping and that, in fact, the mode is linearly stable. In a
tokamak, passing particles continue to provide Landau or collisional drive, as appropriate,
but shear damping can be removed by toroidal effects (Taylor 1977). Thus one can use
D ~ y/k? estimates of the diffusion where the only contribution to y is the electron drive.
Waltz e al (1987) present y/k] estimates of the transport due to drift waves. Taking
kg ps ~ 1 they give the following result for the collisionless diffusion coefficient, which is
applicable in the region v./we < 1

1/2 2(:
xem D=L (m—) PsSs (333)

€p \ 1§ Ly

This clearly differs from the result of Hirshman and Molvig (1979) quoted above. Waltz et
al also give an expression which is valid in the collisional regime:

12 5
w~D=4 (ﬂ) (”_) pics (33.4)

€ \ we) Ly

for ve/ene > 1. Here, v, is the electron collision frequency and w, = vg./(Rg) is the
electron transit frequency.

3.3.3. Trapped-electron induced modes. In lower collisionality tokamaks trapped-electron
effects become important. There then exists a class of drift-type instabilities, the trapped-
electron modes, which are more important than the slab-like circulating electron mode
which we have considered above. This subsection reviews the extensive literature on the
transport that might be expected to result from such modes. There are numerous regimes,
mechanisms. mode structures and approaches which have been developed and the theories
have been categorized accordingly. n

(a) Marginal-stability approach. Manheimer and Antonsen {1979} use a marginal-stability
approach to investigate the effect of the dissipative trapped-electron drift instability on
temperature profiles. The marginal stability approach assumes that if any part of the plasina
becomes unstable then an anomalously high electron transport switches on to return that pifm
of the plasma profile to marginal stability. The model which they use, which does include
the effects of shear damping, is greatly simplified (e.g. the density profile is fixed) but the
profiles which they obtain are in reasonable agreement with experiment. In this work the
stability is determined through numerical solution of the dispersion relation. In an earlrer
(simplified) calculation (Manheimer et al 1976) an analytic stability criterion was derived.

Taking the large aspect ratio limit and assuming 7, = 1 it is: L
2T\ Ly '
4{14+= = 1. ;

( + Te) Lel/? g

(b) Profile consistency approach. This method for deriving the cross-field transport exploits
the fact that the temperature and density profiles in a tokamak are generated by the transpprt
so that a given experimental profile determines the radial dependence of x. in terms :Fof
the heating source. The overall magnitude of the transport is derived by considering the
‘confinement zone’ (which is usually taken to be between the g = | and g = 2 surfaceg).
This avoids detailed discussion of processes in other plasma zones (where the transpprt
is assumed to be very rapid due to, for example, sawteeth at the centre or (possibly)
tearing modes at the edge; these processes are partly responsible for the overall shape of tfhe
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experimental profile (Waltz ez ai 1986)). For example, Tang (1986) models the experimental
temperature profile through the equation

oy 2
T )/ T.(0) =exp| — pe) (3.3.3)
with a7 chosen to satisfy the empirical relation

3ar/2~ g, +0.5 ' ' (3.3.6)

where ¢, represents the edge safety factor. Using the parallel component of Ohm’s law
with the resistivity ~ T2 gives

2
i) = joexp (— sl ) . (3.3.7)

2a?

In order to derive the electron thermal diffusivity (for an ohmic tokamak), the ohmic
heating is balanced against the transport; thus

, id d
Evh= e [r re(r) xe(r) d—rTe(r)} (3.3.8)
so that

Xe = XeoF(r). (3.3.9)
All the radial dependence has been absorbed into #(r} which is given by

exp[($)(ga + 0.5)(r/a)*] — expl—(5)(gu + 0.5)(r/a)*]
(r/a)(ne(r)/ne(0))

and x.o is to be determined by considering transport due to a particular instability in the

confinement zone. Tang postulates that the most important instability that exists between

the g = 1 and g = 2 surfaces is the trapped-electron mode. This leads to an expression for

Xe in this region given by .

L1 (_’7}5)1/2 g [ne+ &l + 1] p2es
RZN\m) Gve U+Eme Ly
The parameter ¢ represents the transition from the dissipative to the collisionless mode and
should be fizxed to be of the order ¢ ~ 0.1-0.2. Matching volume averages of the entropy
production between the g = 1 and g = 2 surfaces corresponding to the two forms for x,
leads to

F(r) = (3.3.10)

(3.3.11)

, B33g10702
R19418

which, together with (3.3.9) and (3.3.10), then gives an expression for the electron thermal
diffusivity in an chmically heated plasma. Here the density profile has been written as

n(r)/n(Q) = (1 — (r/a)’)™. (3.3.13)

By is the toroidal field in T, temperature is measured in keV, the major, minor radii (R, )
are in m, and the resulting expression for x. is in units of m?%s~!.

Tang alsc derives the transport that might be expected to exist in a tokamak with
auxiliary heating, assuming that the density and temperature profiles of the electrons and
ions are the same and, also, the collisionality is restricted to v,e < 0.1. ). is then given by

Xe = XenFn(r) (3.3.14)

%0 = 1.6 (3.3.12)
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where the radial dependence is in Fj(r):
expl3(ga ++ 0.5)(r/a)?] [ dx xh(x)

F) = 3.3.15
Y 7y T VT g (3349
where i (r) represents the total power deposition profile. The magnitude, ye, is
Pr
=0§—— 3.
Kot = O RTio(1 & Dy (4310

where Pr is the total power (in MW) and all other parameters (and units) are as defined
above.

(c) Strong turbulence estimates. The v/ ki models employ the argument that at saturation
the growth of the mode (usually taken to be the linear growth rate) will be balanced by
turbulent diffusion (i.e. kf*LD). The value of £ is to some extent a free parameter, but
experiment seems to favour it to be in the region &, p; ~ 0.3. Dominguez and Waltz (1987)
use these arguments to derive the electron and ion thermal diffusities that would be caused by
ion temperature gradient (ITG) modes, circulating-electron drift modes (both collisional and
collisionless) and the trapped-electron modes (collisional and collisionless}. Their simplified
treatment of the electron modes has a switch from the collisional to the collisionless mode as
a collisionality threshold is crossed. (In reality an intermediate collisionality might involve
aspects of both modes.) The expressions they give are, for the trapped-electron mode
(collisionless or dissipative):

. © Wy
Dte=€”2k_2*e{1’u_e] | (33.17)
L eff J min

for the circulating electron mode (collisionfess or dissipative), the result of equations (3.3.3)
and (3.3.4):

506:5";%{1, i} (3.3.18)
kJ_ Cthe @We | max
and for the ITG mode a result similar to (2.3.29):
b, = %(21-1:;16,,)1/2. (3.3.19)
L

Here we have defined the effective collision frequency, veg by vegr = vei/€ and the suggested
choice of & is k3 p; = 0.3. These transport coefficients are then combined to give total
thermal diffusivities of s

Xe = 3 (ceDic + CooDee)(1 + Eei finnm) (33.20)

% = $1ciDi fin + (e Die + € Dee)] (3.3.21)
where the threshold factor for the ion-temperature gradient-driven mode, fjy, is given by

fim = {1 + exp[—6(n; — ne)]} ™" (3.3.22)

and ny Is a measure of the threshold for the 7; mode (see section 2.3).

This expression is interesting because it takes into account the effect of the ion turbulence
on the electron heat flow through the coefficient & (and the effect of the electron turbulence
on ion heat flow through the coefficient ;). The values for the coefficients are to be chosen
by fitting to the experimental data. The only constraints on the ‘mixing’ coefficients given
are:

1<8i<3 0<&<1. (3.3.23)
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- Similar expressions to (3.3.17) are derived by Perkins (1984) using mixing-length estimates
for the thermal diffusivities. - "
An alternative /2 estimate of the electron thermal transport due to the trapped-electron
drift mode is given by Romanelli ef al (1986):

5 gne (mc)”z ple; 1
Ke = 242 €nVae \ 11y Ly 1+0.1/v,
where the factor on the right has been included to allow a smooth transition from a

collisionless region to collisional. Fn the dissipative limit this expression yields a factor
7 times the result of (3.3.17).

(3.3.24)

(d) Weak-turbulence estimate in ‘slab’ geometry. Gang et al (1991) present a weak-
turbulence calculation of the transport that is expected from the trapped-electron-driven
drift wave. Such a treatment leads to fluctuation levels (and hence transport) which are
lower than the predictions of the strong turbulence or mixing-length theories. The geometry
is that of the sheared slab and two collisionality regimes are considered: collisionless

W > We > Veff {3.3.25)
and dissipative

Veff > @ > (04s (3.3.26)
where ver = vi /€. These frequencies are constrained to satisfy

Veff; Wies & < pe (3.3.27)

where wee is the trapped-electron bounce frequency. A kinetic treatment is employed
with the ions described by the nonlinear gyrokinetic equation, the trapped electrons by the
nonlinear bounce-averaged drift-kinetic equation and the untrapped electrons assumed to be
adiabatic; ion and electron temperature gradients are neglected. The fluctuation spectrum
is derived by balancing the linear growth rate, the shear damping and the nonlinear energy
transfer. From the fluctuation level and spectrum it is possible to derive the following
transport coefficients:

L\ 7 2 pzc
=087 = AL=) HEH==
mose () (4) 20T

L l,f2 }; 2 _ pzc
;= =32 =r e £y fs -8
% =087 (L ) (Ae s) F(kg) i (3.3.28)

] "

= 04732 28 (L) presysTE
D =04z (L) (Aes) (e)L

§ n

These expressions are valid for both the collisionless and dissipative cases, though the
definitions of some of the variables are different in the two collisionality regimes, as outlined

below. Thus
AL = Je(Ln/L) 2 In (s / —E—kg) (3.3.29)

where ks = kop;. The vadable ¥ is a measure of the linear electron drive and is given by

7 = { e eV collisionless }

&s/ (VettLn ) dissipative . (3.3.30)
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The parameter k§ is the cut-off in the wavenumber spectrum due to shear damping. It is
obtained by solving the equation which matches the linear electron drive of the mode to the
shear damping (i.e. the nonlifiear transfer rate is neglected):

[ rrc !;5 A L"
Aglkg) = fkg) = — (3.3.31)
$ L
where
R 2 collisionless
flko) = { ke dissipative . } (3.3.32)
The three functions involving this cut-off wavenumber are

2 —x+2x71 collisionless

F(x} =
=it 4+ &A% dissipative
x7l— 24 2432 collisionless

Gx) = (3.3.33)
In(x~") — 24 2452 dissipative
(1en) [(1/en = 3) G(x) — 2F ()] collisionless

H(x) =
(1/m)[25F (x) + 9x G (x)) dissipative .

A similar theory is given by Rogister (1989} who finds the following form for x,:
2 2
PiCs Lye { La - #
~S 2 =) =Tk G —1 3.3.34
Xe™ T (Ls) .| keps ( ) ( )

where G is an unspecified function of (I™ — 1), and I'* > 1 is the condition for the onget
of instability. However, this function G increases sufficiently fast with ['* that the plasma
tends to adopt ‘marginal-stability’ profiles corresponding to I'* = 1. For §?L¢/L, > 1, ™

is given by
€Pny 1Ll wver
== 52 z 3.3.35
keps ¥ Ln s (@ + vesz) ( )

where ) is an adjustable numerical coefficient and w/veer = 8.86 - 10 T2/[A*nL, (1 +
Zer)]. (An expression for I'* in the opposite limit is given in Rogister et af 1988.) Here
T, is in keV and other parameters are in SI units.

The difference between this result and that presented by Gang et al (1991) is partly due
to the fact that Gang et al neglect the electron temperature gradient; also, they treat the
trapped-electrons nonlinearly but the resulting effects are found to be small.

fe) Toroidal mode structure. The nonlinear theory of electron drift waves in a toroidal
geometry is considered by Similon and Diamond (1984). When toroidicity is taken into
account there exists an extra branch of the drift wave absent in slab geometry (Chen and
Cheng 1980). In the slab-like case the radial eigenfunction equation involves a potential
hill and the eigenfunctions satisfy the Pearlstein—Berk boundary conditions. When toroidal
effects are taken into account the calculation is performed in ballooning space and the
corresponding potential hill becomes modified so that there exist local potential wells. These
wells are able to confine a new mode—the so-called toroidal drift mode. Of course, the
original slab-like mode still exists, though it will be modified slightly due to these local
potential wells.
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Similon and Diamond suggest that it is this toroidal branch of the drift modes which
is important when considering transport and this is the branch which they discuss for a
tokamnak with circular, concentric flux surfaces. They consider a linear electron response
which is taken to be of two parts—an adiabatic piece and a non-adiabatic piece which is
modelled by an ‘i8” prescription representing trapped-electron drive. The ions are described
by the nonlinear gyrokinetic equation. Caleulation of the fluctuation levels and spectrum in
an intermediate turbulence regime (corresponding to the turbulent decorrelation rate Iying
between the ion transit frequency and the linear frequency spectrum width) then leads to
the following forms for the test-particle diffusion coefficients. For the untrapped electrons,

2/3 4/3
My g 1 ,O Cs
~Dy=02 = = 33.36
&) (&) et 6359
while for the trapped electrons, two collisionality regimes are considered. When wye >
Veff = @Dfep-
/3 4/3
me q I ple
~Dy=02{— —— == 3.3.37
Ho ™ ( i) (6:) s Ly ( )

while for v.g < wye:

@)% 1 pics
2n? s2¢, Lp

(3.3.38)

Xe ™~ Dy~

A weak-turbulence calculation of the transport due to the toroidal collisionless trapped-
electron mode has been performed by Hahm and Tang (1991). They treat both the ions
and the trapped-electrons nonlinearly (the circulating electrons are assumed to have a
Boltzmann response). The trapped electrons are described by the bounce-averaged drift-
kinetic equation and the ions by the gyrokinetic equation. Hahm and Tang argue that the
relevant collisionality regime is the collisionless case, and they adopt the ordering:

Wye = Wpe = Verr Wi < @& < Wpe (3.3.3%

where the condition w > wy; allows the effects of trapped ions to be neglected. The orbit-
averaged precession drift frequency, wpe, is defined by wpe = wye(€, v/ v?h JG(s, &) where
the pitch angle « is related to the turning point of a trapped particle, 8;, through « = sin 8.
For a high aspect ratio tokamak with concentric flux surfaces considered here, G(s, «) is
given by:

G(s, £) = 2E(x)/ K (k) — 1+ 4s(E()/ K () + &2 — 1) (3.3.40)

where E(x) and K(x) are the complete elliptic integrals of the first and second kind.
For the calculation of the fluctuation spectumn G(s, ) is replaced by its « average,
G(s) = 0.645 +0.57 (Tang 1980). Using weak-turbulence theory to calculate the fluctuation
spectrum, the following, rather complicated, expressions for the transport coefficients are
derived. The particle diffusion coefficient, D, is given by

27 q 5 ky kur
142 M _ (I
D= (15)( )n( +4nl) [LL (k[_) 1](kMps) |
RN RN/ R 3\ —2R\ plc
— —_— 3.3.41
X(Ln) (GLH) (GLn 2) °XP(GLn) L. . @34




Survey of theories of anomalous transport 749

the electron thermal diffusivity by

_(PeN (d? 5 \ 7' Tku ks
o= (5) () (1 30) [t -]

RN/ R\ R 3\? —2R\ p2e
= -= s 34
* (L,,) (GL,,) (GLn 2) exP(GLn) Lre (33.42)
and, finally, the ion thermat diffusivity by
(1+1.93m)
=275 p 33.43
X m(L+ 1.25m) (33.43)

In these expressions
kol = P21+t (1 4+ m)). (3.3.44)

The wavenumber, k; is the solution to a rather complicated equation ((33) of Hahm and
Tang 1991} but an approximate solution is

2
(k—L) = 3(1 + 1.)Gey, . (3.3.45)
kau

(f) Clump theory. Terry and Diamond (1983) and Diamond ef al (1983) have addressed the
role of clumps and their effect on electron drift-wave stability. The authors find that they
provide a significant destabilizing influence which can be described in terms of a nonlinear
growth rate yyr, where

PO i — (33.46)

T [ - Ck, w)]
Ok ) exp (—&) (33.47)
Wye L] )

with 3. the linear growth rate and
S 1/2
Clk, wg) =2/ Alhps) = (ﬂ) (1 -
€ \ [y
where Akos) = (k0271 — Jo(W2k/ko)], @2 = €qt0se and k7 is the mean-squared
wavenumber. & is a ‘shielding response’ which Diamond et al (1983) give as 5 ~ % The
mode frequency, ¢ is a solution of the linear dispersion relation. Taking a mixing-length
estimate for the turbulence then leads to the following thermal diffusivity:
129
~ . 3.3.48
T B -ck @l G349
The results of the linear theory due to Gang et al (1991) presented in part (d) of this
subsection indicate

oy, = e /(1 + k2 p2) (3.3.49)
_|wk|(£)1f2(1_ﬁ)éln(ﬂ)(; (3.3.50)
L= 2 ki1 Wya J Xy A " -.

where

A L, 1
R (3.3.51)
X Ls s(keps)

and the value of G, depends on the collisicnality regime:

zvﬂ(wk/mde)aﬂe_wklm“ Wy > Wde > Veff ’
= 3.3.52
G { @/ g | o) Ogo < Wi < Vit (3.3.52)

(where we note that shear damping does not affect the toroidal mode).
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(g} Transport stabilization. Kaw (1982) considers the effects that anomalous thermal
transport has on the stability of the collisionless trapped-electron mode. He finds that
for sufficiently high values of x. the transport has a stabilizing influence on the mode. This
suggests a model in which the trapped-electron mode is unstable and drives anomalous
transport, which increases until it stabilizes the mode. Kaw illustrates the idea with a
relatively simple model of the trapped-clectron mode. He considers v, < 1 and a fluid
description of the ions, with the passing electrons taken to be Boltzmann. The response for
the trapped electrons is calculated from a model equation which includes a term describing
the effect of the thermal diffusivity on the distribution function. Charge neutrality then leads
to a growth rate for the resulting mode of the form:

w? .
y ~el222 — (3.3.53)
k_L Xe
It can be seen that x. plays a similar role to that of the effective collision frequency in the
dissipative trapped-electron mode. x. is then assumed to saturate at such a level that the
mode will be stable, i.e. this growth of the mode is balanced by the shear damping. This
then leads to the following expression for the electron thermal diffusivity:

_oze”z Wye LS
e T 0+ Lre

where Kaw suggests that &k, o; ~ 1. The parameter & is an O(1} number describing an
averaging over a velocity distribution and can be treated as a fitting parameter.

(3.3.54)

3.3.4. Inverted gradient profile effects. Inverted gradient profiles (i.e. negative 1., ;)
have different effects on plasma stability depending on the mode; the circulating-electron
drift mode is destabilized relative to the positive r; . case whereas the trapped mede is
stabilized (Tang ez @l 1975). One might expect the overall result to be stabilizing when the
collisionality is low (and trapped electron effects are important) and destabilizing for high
collisionality (when trapped-electron effects are negligible). Horton (1976) investigates this
effect by constructing a dispersion relation which describes all three modes (i.e. collisional
and collisionless circulating electron modes and the trapped-electron mode). He finds that
for n;,e < O there is a gain in stability (over the positive #;, , case) when v, < 0.3 and
a destabilization when v,, > 1. These linear results are then used to derive a quasilinear
estimate of the transport that might be expected from a plasma in which all three instabilities
exist. The results are the following, rather complicated, expressions for the particle flux:

r de

_— (ASO + 7.5 ) (3.3.35)
Rg L,
and for the electron thermal flux:
ge de 1 2
2= AS S 3.3.56
o~ ——(AS' +7.5%) . (3.3.56)
In these expressions we havc.
2
pec.
Daw =2 SL—” (kyps) (3.3.57)

where o is a constant of the order of a few tenths and is to be fitted by comparison with
experiment. The parameters S* represent the following sums:

3
=Y G (3.3.58)
m=1
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where the G/, are integrals given in the reference, and A = % is suggesied.

Considering the dissipative mode (v, > 1) Bishop and Connor (1990} simplify Horton’s

expression to derive
1 q Ls file 12 -1 poS
e —{— 15 =, 3.

(Note that this expression differs from that which appears in the main text of Bishop and
Connor (1990), where a typographical error has been introduced in transcribing the results
derived in their appendix.)

3.3.5.  Short-wavelength trapped-electron mode. An analysis of an extremely short-
wavelength trapped-electron temperature-gradient driven mode is given by Diamond et af
{1991). This short-wavelength limit allows the ions to be treated as Boltzmann-like since
kops > 1. An upper bound on kp is obtained by requiring that trapped-electron effects are
important, i.e. @y < Wy, wWhere ey is the real part of the mode frequency. As the mode
frequency is of order w,e the corresponding wavelength range is

g2 N2
1 < kops < ;" (g—) . (3.3.60)
(+

Collisions are neglected, which leads to the following constraint:
Wy > Verr - (3.3.61)

A linear dispersion relation is derived from the quasineutrality condition, where the passing
electrons are also treated as Bolizmann-like and the trapped electrons are described by
the bounce-averaged drift kinetic equation. The trapped-eleciron equation is solved by
expansion in powers of wy/w to yield the following dispersion relation for the mode

(14 7) 2 ( 1 3) 3
-1l —— Q4+ — {1/ 1} =0 3.3.6
[ A 2€ ] + ETele 2 + 2er, { e ) ( %)

where 2 = w/wy is assumed to be large for the ordering to be consistent. A criterion for
instability can be derived from this dispersion relation:

V2e {1 3\ ¢
r>-—1+\/'2?+—(~———) LA 3.3.63
6 \en 2} (14+mn) ( )
For ¢, ~ % this is always satisfied and the plasma wiil be unstable. Equation (3.3.62)
can be solved to derive the mode frequency. @, = F(¢, T)wy and the growth rate,

y = G{¢, T, €r}wy which can then be used in a ‘mixing-length’ expression for the electron

thermal diffusivity:

26 & plcs

~ TF s2(keps) Lo
A linear analysis of the short-wavelength limit of the dissipative trapped-electron

instability under the same conditions (3.3.60) was performed much earlier by Mikhailovskii

(1976). The growth-rate obtained is

Y _ 26(/w) (I +neh)

Xe (3.3.64)

w {In[32(ew/(20))}/2]}3/2 {3.3.65)
where J = 3./Tvg/4, o is the mode frequency, given by
2, .
o= 058250 (3.3.66)
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and I; and I, are integrals which can be evaluated numerically with the result that

I =1.61 I, =-1.07. (3.3.67)
Instability requires
e > 1.52. ’ ‘ (3.3.68)

No expression for the transport is given in this work, but use could be made of the mixing-
length expression of (3.3.64), with these values of growth rate and mode frequency. A
maximum bound on the diffusivity can be obtained by using kgps ~ 1.

3.4. Electromagnetic drift-wave transport

3.4.1.  Electromagnetic electron drift-wave turbulence. In a similar vein to their
electrostatic drift wave, which we have discussed in section 3.3.1, Molvig et al (1979)
investigate the effects of turbulence on the electromagnetic electron drift wave in a
cylindrical geometry. They find the electromagnetic version is important when the ratio
of electron thermal pressure to the magnetic pressure, 3., exceeds the electron-ion mass
ratio, i.e. B, > (me/m;) (Be = 2ttope/ B2, where the units are SI). The test-particle diffusion
coefficient is then dominated by the magnetic fluctuations. Including this diffusion, D, in
the electron-drift-kinetic equation then yields

007 { © V/L\’ ¢ [ ¢\
~e= e [—— ) (=) 21— 34,
Drxe=7m (1+r) (L,,) L. (wpe) 341)
for marginal stability.

3.4.2. Microtearing turbulence. The collisional microtearing mode is linearly unstable
in tokamaks but yields very low transport, x. ~ veipiz, and is unable to account for the
observed anomalous transport. In large, high temperature tokamaks, collisionless modes
are more relevant, but the collisionless microtearing mode is found to be linearly stable.
However, a study by Garbet et al (1990a, b) shows that the mode is nonlinearly unstable
when the turbulent radial diffusion of the electrons is included. The current perturbation is
derived from a modified Viasov equation for the electrons which incorporates a diffusion
term to model these nonlinearities. Inserting the resulting expression for the current into
Ampere’s law then gives a radial eigenmode equation for the magnetic fluctuations which
possesses a potential well characterized by the parameter ﬁ;‘:

* Ly : ey Ne
Br=58 (L_n) (1 +3 ) T (3.4.2)
The assumption that diffusion will cccur at a Jevel which renders the mode marginally stable
then yields ks8p {where 8p represents the radial width of the paralle] current channel) as a
function of ;. This can be approximated by the linear function (Garbet et al (1990b))

ﬁ;‘ =0254+12 | kedp | . (3.4.3)
The electron thermal diffusivity is then given by
sp\* ptu
Xe = 6(kodD) (—9) %. (34.4)
1 $

The final unknown quantity to be determined is the ratio p/p; which also has a dependence
on ﬁ;‘. To evaluate this, one must take electrostatic fluctuations into account; this requires
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inclusion of ion dynamics for which a Vlasov description is used. Numerical scanning of
the parameter space for the marginal-stability condition yields B as a function of both & p;
and 85 /p0i. Results are quoted for ‘typical’ tokamak parameters (g = 2, 1, = 2) from which
an upper bound to the transport is determined

Xe S0.055L7e "‘ the | (345)

S

3.4.3. Electron temperature gradient turbulence. The earliest work to sugsest that
the electron-temperature-gradient driven mode could be the cause of electromagnetic
fluctuations and transport in tokamak plasmas is by Rozhanskii (1981). A sheared slab
geometry is considered and the hydrodynamic equations are used in two limits—large and
small 8. In the small 8 case (B < €?) the electron thermal diffusivity is given as

2
o= (QL) e (3.46)
pe

where @ is a characteristic length scale in the radial direction. (Appropriate choices of a can
be made by comparing with later results to be discussed below. Thus Lee (1987) indicates
that one should choose a ~ L, the shear length scale; whereas the work of Horton et af
(1988} indicates that a ~ Rq where R is the major radius and g is the safety factor.) In
the opposite limit, 8 > €, the electron thermal diffusivity is

Xe = (i) Cobs | : (3.4.7)

Wpe) @

(Comparison with Horton (I988) below suggests that a = Ly, is the correct choice.} The
next authors to address this electron temperature mode were Guzdar et al (1986) who
carried out more detailed studies. The theory of the mode in a sheared slab geometry and
its implications for the electron transport is described fully in the work of Lee ez af (1987).
Perhaps a more relevant work, as far as tokamaks are concerned, is that of of Horton et af
(1988) in which the nonlinear properties of this mode are studied in a toroidal geometry.
In this subsection we shall discuss these two theories in more detail.

We begin with the sheared-slab treatment of Lee et al (1987} which is a2 more complete
description of their original work (Guzdar et 2l 1986). Kinetic theory is used to deseribe
the colhsmnless electron-temperature-gradient driven mode in terms of a pair of coupled
equations in ¢ and Ay (which correspond to the electrostatic and electromagnetic fluctuations
respectively). The equation is solved numerically to analyse the stability properties of the
first three modes (i.e. the three modes with the lowest number of radial nodes). The principal
result is that the lowest-order mode is the most unstable and leads to a critical 5, with

Hee = 1

which is consistent with the shorter-wavelength result of Horton et af (1988) below. Using
quasilinear theory, together with linear properties of the mode derived from the numerical
analysis, they derive the following expression for the electron thermal diffusivity:

2
o ~ 0.13 (wi) U“"’Sf( o) (343)
pe

where f(n.) = (1 4 n.). This result is restricted to

69
ne(l + 1} K - (3.4.9)
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Connor (1988) uses scale-invariance arguments to demonstrate the scaling of (3.4.8) for
ne —+ oo when f(7.) —-constant.

The theory of Horton et @l (1988) mainly employs hydrodynamic equations in a tokamak
with a circular cross-section. Hydrodynamic theory predicts that there exists a critical value

for 7

Tee = 3 (3.4.10)
above which there is an instability. Inclusion of FLR effects raises this value to

Do = 1. (3.4.11)

These can be reconciled by kinetic theory which indicates that the two results correspond
to different perpendicular wavelength regimes:

2 fork,p,<0.3
~ 3 el M
Te.e { 1 forkipes~0.5. (3.4.12)

thus indicating that FLR effects become important when k) pe; = 0.3 where

TV 1
Pei =(—) (3.4.13)

e e

with £2.. the electron cyclotron frequency.

The linear theory indicates that the most important 7, driven modes are those with short
wavelength and are electrostatic in nature. Under the restrictions of the validity of the
hydrodynamic treatment, i.e.

s/q < 1/(2er)'? (3.4.14)
the toroidal regime , :

§ < 2g (3.4.15)
and the condition that the density profile be sufficiently peaked

€, < 1. (3.4.16)
Horton et al derive the following mixing-length estimate for this short-wavelength mode:

o= (_:;_:)”2 (ZT‘?) né“%- (3.4.17)
In the limit of flat density gradient (i.e. n. 3> 1) they give

o= (r_:f) 2 (qu) (kn)m% _ (34.18)

Both of these exhibit a rather low level of transport.

They then proceed to show that the longer-wavelength part of the spectrum develops
an electromagnetic component. In Horton et al (1987) it is shown that these longer-
wavelength electromagnetic perturbations can give rise to substantial transport when the
motion becomes stochastic in nature. Linear theory indicates that in the case of the #,
driven mode there is marginal stability in this long-wavelength limit. However, in the
nonlinear theory a long-wavelength mode can be driven unstable through an interaction
with two shorter-wavelength modes. Stochastic diffusion then leads to two scalings for the
transport coefficient, corresponding to the two situations where stochastic diffusion occurs
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(Horton ef @/ 1987). For the regime where the circulation frequency of the vortices, g, is
comparable to the mode frequency they derive

~ (=) 22 (3.4.19)
Xle e LT,,. S

where the typical scale length for the turbulence has been taken to be the collisionless skin

depth, c/wp- In the other regime, where the circulation frequency is comparable to the
bounce frequency of the trapped electrons, they derive:

2
C
Xz ~ €' (w—) Wpe - (3.4.20)
pE

They are therefore lead to the following result for the electron thermal diffusivity due to
stochastic electromagnetic drift waves driven by electron temperature gradients:

2

Yo~ (i) B L el (—c—) he - (3.4.21)
wpe/ L7, Wpe

Neither of these obey the n,(1 4 n) scaling predicted in (3.4.8) by Lee et al (1987). This is

because of the hydrodynamic treatment employed by Horton ef al which imposes 7, 3> 1;

as shown by Connor (1988) f(n.) —constant in this limit.

3.5. Conclusions

Electron transport due to electron drift-wave turbulence is a mature subject and a great
variety of electron thermal diffusivities have been generated in the literature. A test of these
against JET data has been carried out by Tibone et al (1994). Many of the electrostatic
drift wave models fail to produce radial profiles for x. increasing towards the plasma
edge, although more success is achieved by invoking the marginal stability idea. The
models based on the collisionless skin-depth turbulence are found to produce somewhat
better radial profiles. All the models we have discussed are of the gyro-Bohm family
cotresponding {o fluctuations on the scale of ps or ¢/wp.. However, it should be noted that
the recent numerical simulations of electrostatic drift waves in a sheared slab by Carreras er
al (1992} have indicated longer wavelength fluctuations around low-order rational surfaces
which could lead to Bohm-like behaviour. Connor e ¢! (1993) have shown that toroidal
coupling effects could also lead to extended drift-wave structures. The associated transport
may therefore be large, possibly causing the density, temperature, ete to take up marginally
stable profiles: in any case one might again expect a more Bohm-like scaling.

4. Electron transport induced by magnpetic islands

4.1, Qverview

The magnetic component of electromagnetic fluctuations considered in section 3 can cause
stochastic magnetic fields and result in an anomalcus transport according to the Rechester
and Rosenbluth (1978) formula. In this section we concentrate on the magnetic fluctuations
associated with finite-sized magnetic islands resulting from nonlinear tearing-mode island
instabilities. This topic has seen rapid growth recently and therefore warrants a more detailed
discussion.

A tearing instability associated with a given rational sutface leads to a chain of magnetic
islands centred on that surface. In a tokamak, many such rational surfaces exist and one can
envisage a situation when the island chains overlap and interfere with each other. When
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this occurs the magnetic field becomes stochastic in the region of overlap and anomalous
transport is expected (Rechester and Rosenbluth 1978).

In the linear regime the tearing-mode amplitude (and corresponding island width) grows
exponentially with time, before rapidly entering a nonlinear regime in which the growth
becomes linear in time (Ruatherford 1973):

dw A

—_———— 4.1.1
at oo ( )

Here w is the island width. A’ is the standard tearing-mode parameter and o is the
plasma conductivity. In the limit that the poloidal mode number m > 1, A’ is negative
(A = —m/r) and (4.1.1) implies micro-islands cannot form. One has to identify a
destabilizing mechanism to drive the islands against this damping and a variety of these
exist as we shall discuss in detail in section 4.2. Balancing such a drive (which typically
depends on w) against the A’ damping then gives rise to an expression for the steady-state
island width. Many of the theories which we shall discuss rely on the very presence of the
island for the drive to exist. This, together with the stochasticity condition gives rise to two
bounds on the island widths. First the islands must have a sufficientiy large width that they
overlap with the island chain on the adjacent rational surface (the so-called stochasticity
condition). Second the island width must not be so large as to completely destroy all
surrounding islands (and so lose self-consistency of the theory).

Let us now turn to the level of transport which is expected when islands of the required
width exist in the plasma. In the stochastic region we can employ the results of Rechester
and Rosenbluth (1978) for the test-particle diffusion coefficient

D = upe ZL,,, (ag,) : 4.1.2)
mn

where L. is the correlation length. The fluctuation amplitude can be expressed in terms of
the island width w, shear length L; and minor radius r, ie.

5B,  mw? .
= . 4.1.
B 16rL, “.13)
White and Romanelli (1989} evaluate L. in terms of the island width to be
2+2R
Lo= “/_, g (4.1.4)
ng'w

Thus, given the istand width (which in general will depend on m) one can derive an
expression for D (which we assume to be representative of the electron heat diffusivity).
Strictly one should sum over all n (and m = ng) for which the islands exist. However,
assuming that the mode spectrum is dominated by some typical wavenumber m leads to the
following simple expression for x.:

UheW M

Ly
Enowledge of m and w, which depends on the particular driving mechanism, then leads
to a scaling for the diffusivity. This treatment of the transport may be too simplistic in
that it does not address the bounds on w which we discussed earlier (and is therefore more
relevant when islands evolve independently).

White and Romanelli (1989) describe a theory of the transport which does address
these bounds. Although they consider a particular driving mechanism for the islands, their
treatment is generic to all models which predict the existence of stable islands in a stochastic

Ke ™ (4.1.5)
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sea. The degree of stochasticity is quantitatively described by defining a “stochasticity’
parameter ¢ such that

o = Z ng'w (4.1.6)
i
with
Qe -< g < Wyt 4.1.7)

corresponding to the region of validity. The lower bound gy (~ 1) must be exceeded for
islands to overlap, whereas the upper bound, o indicates stochasticity at such a high level
that all magnetic islands will be destroyed. The sum over toroidal mode number, s, in the
definition of ¢ is assumed to be bounded by some value, n = N. Taking the island width
to scale as w = w/n then gives a simple expression for a;:

o = WNg' . (4.1.8)

This equation determines the value of @ for which transport is important. Using equations
(4.1.2)—(4.1.4) together with (4.1.8) then leads to the expression

B )

To obtain a result which can be compared with experiment, values for &, and N need to be
chosen. We have described above how transport is only important when islands partially
overlap (but are not completely destroyed); this suggests the choice g ~ 1 (coresponding
to marginal stochasticity). The number of modes N could be treated as a constant in order
to obtain a simple scaling for x. with the plasma parameters. If N is indeed a constant,
then (4.1.9} describes transport for any mechanism which leads to islands in regions of a
stochastic magnetic fleld. A variety of such mechanisms exist as we shall describe in the
next subsection.

Finally in this subsection we mention the semi-empirical, but successful, Rebut—Lallia—
Watkins transport model (Lallia et al (1988) and Rebut et af 1989). This model combines
an assumption that transport due to magnetic island formation switches on when a critical
temperature pradient is exceeded, with empirical results from power-balance studies to
suggest a scaling for the electron thermal diffusivity {which is constructed in a dimensionally
correct form). Chains of magnetic islands are assumed to exist, localized around rational
surfaces although the detailed mechanism for their creation is not addressed in these first
works. A chaotic region exists between the island chains when there is overlapping of the
islands and the existence of such a region leads to enhanced transport. This is characterized
by a stochasticity parateter, above which islands overlap and regions of stochastic magnetic
field exist between them. It is argued that this happens when the electron temperature
gradient exceeds a critical value. This critical value and the anomalous diffusivity are
obtained from inspection of Ohmic, L-mode and H-mode JET data.

Four dimensionless parameters are chosen to describe the dominant physical processes
occuring in the tokamak—plasma pressure is represented by B, = 2uop/B3. resistivity
by S = nJ/(Byvp), diamagnetic drift by @ = (VkT/eByum)® and power flow by
$ = P/(37%rRnkTwvy). JET data then suggests the following scalings for the critical
temperature gradient and heat flux

e = Se/ Bpe @, = Q5121 = (Qee/ Q)Y (4.1.10)
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where the subscripts i, e represent electron and ion quantities respectively. One can also
utilise certain dimensionless geometrical factors such as aspect ratio, safety factor, etc.
When these are taken into account a critical temperature gradient of

1/2 2 172
nJ B3 ] ( 1 ) e
VkT:). =000 | ————— || — 4.1.11

is postulated (in SI units and with & being the Boltzmann constant). Note that 5 is the
classical Spitzer resistivity and other parameters are standard. This implies

/4,12 7
(V) %;" . (4.1.12)
e
The anomalous electron heat flux, F., is taken to scale as
vTe
Fe = nexV(kT.) [1 - I VIZ :|
1 27427 & N, |
— Il I B ST 12
Xe =0.15 [ Tt L,J - (qu lez) Alpom)'/2. (4.1.13)

when the temperature gradient exceeds the critical value given in (4.1.11) and the radial
derivative of the safety factor satisfies ¢’ > 0 (F. = 0 otherwise). Under the same
conditions, the following expression for the anomalous ion heat transport is obtained:

vIe
F = nixiV(kT) [1 '—" Vi ]
e ZiT /2
Xi= ﬁ%zﬁ (4.1.14)
1+

where the Z. scaling is introduced in the later work by Taroni et af (1991). A scaling for
the particle flux is also obtained in this later work:

VT
De ot %e [1 - Vi’z } - 4.1.15)
It is interesting to note that one can express ¥, in the gyro-Bohm form
r\3/4 Ly e  Vae T M2 pEes
~[—=] —{1 —-) —_— == - 4.1.16
Xe (R) Ln(+2 (ﬁeq) R (“-1.16)

or equivalently,
r 334 Ly e Vie B 127 ¢ PsCs
~(ZY 20 —) De ™ < . 4.1.17
Xe (R) L,._( * 2 (q met) W) R ( )

4.2, Island drive mechanisms

The essential feature of theories of island growth is that they should give rise to a perturbed
parallel current which is able to drive the island growth against the A’ damping illustrated
in (4.1.1). As the expression for the transport given in (4.1.9) is independent of the island
drive, we expect this result to be applicable to all the theories discussed in this subsection.
Alternatively, one can use the expression (4.1.5), substituting for the corresponding island
widths.
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4.2.1.  Stochastic transport of current density. White and Romanelli {I989) examine
whether current, cartied from one island chain to another by diffusion across the stochastic
region, could self-consistently sustain the islands (i.e. counteract the natural stability of -
the high m tearing mode). Particles can diffuse radially across the stochastic region and
{assuming the collisionality to be small) they will carry information from one island chain
and deposit it at another after a correlation time 1, = L./vy where L, is the correlation
length (see (4.1.4)). The distance travelled in this time, L, is related to the test-particle
diffusion coefficient, D, through L = (D)% The net current fluctuation, §J;, arriving at
an island chain from two adjacent chains (a distance L away) is given by §J; = L2J|’|’ where
J| represents the equilibrium current and primes denote radial derivatives. This perturbed
current can only result when the stochastic region exists; it then leads to island growth if
Ji' > 0 and this drive exceeds the decay due to A’. One then finds that stable islands can
exist if the parameter, p, where

6NS2q B¢

= 2.
I3 73-2#'01?‘,‘2}"!.’ (4 1)
lies in the range
O<p<pe (4.2.2)

where the value of p. is not determined but can be taken to be approximately wnity, With
increasing drive, p decreases to zero and «; approaches a stable solution « (where ¢, ~ 1)
to maintain the estimate (4.1.9). In fact, the solution for cz; approaches o, very rapidly as
p drops below p, so that the transport is expected to be relatively independent of the drive
once the threshold has been passed. One might expect a similar threshold to exist whatever
the driving mechanism.

4.2.2, Pfirsch-Schliiter and bootstrap current islands. A modification to (4.1.1) due to
Pfirsch—Schliiter-type currents can be obtained by taking into account the combined effects
of magnetic curvature and pressure gradients. This work has been performed within the
framework of MHD by Kotschenreuther ef af (1985) where it is found that (4.1.1) is modified
by a term, oy, proportional to the pressure gradient, ie.

dw 1 &,

— o~ —— (AT 2} . 423

" e () @23)
From (4.2.3) we see that if oy > 0 then Pfirsch—Schliiter currents are able to drive high
m perturbations and stable small-scale islands of width w = —cp/A’ can form. This

corresponds to an equilibrivm with unfavourable average magnetic curvature whereas a
tokamak (which has favourable curvature) has ¢, < 0. Thus Pfirsch-Schliiter-type currents
cannot drive small-scale islands in a tokamak for g > 1.

In a tokamak particles can become trapped in the weaker magnetic field on the outboard
side. These can couple to the pressure gradient and produce a current which flows parallel to
the field lines—the so~called ‘bootstrap current’. The difference in bootstrap currents inside
and outside a magnetic island might sustain the island. This is addressed by Carrera et af
{1986) who consider a toroidal equilibrium at large aspect ratio. A collisionality parameter,
d = v/, is defined, where v, is the electron collision frequency and ey, is the fransit
frequency. The motion around the major axis is assumed to be collisionless, leading to the
conditions

d<el? <1, (4.2.4)
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Within the island the motion is collisional and, since the ‘island collisionality® ~ (r/w)v,e,
the island width is ordered as w ~ da where « is the plasma minor radius. The current is
calculated from the Ohm’s law for the island, which Carrera ef al derive from a solution
of the nonlinear drift kinetic equation for the electrons. Two small expansion parameters
are identified—d (as defined eaclier) and & = p./w where p. is the electron Larmor radius
and w is the island width. Expanding to zeroth order in § and third order in d leads to the
lowest-order Ohm's law in the island region:

Jy =230 —2.1e"D0E) (4.2.5)

where ¢ is the inverse aspect ratio of the flux surface about which the island chain is centred,
F:'" is the poloidal average of the electric field in the island and oy is the classical Spitzer
conductivity, o5 = 1.97ne?t, /m.. The total conductivity is reduced relative to the classical
value due to the effect of trapped particles and this modifies the A’ damping term.

In order to obtain the bootstrap current contribution it is necessary to expand the drift
kinetic equation to first order in §. This results in the following expression for the island
bootstrap current:

Jy = -—%e”zppeevm:—: (4.2.6)
where I, ; are numerical integrals (defined in the reference), and pp. is the poloidal electron
Larmor radius (temperature gradient effects have been neglected which is justified in that
they contribute relatively little to the bootstrap current—at least in the large aspect ratio
equilibrium case). Combining this with (4.2.5) leads to the total current, from which the
following island width can be deduced:

(1—2.1e'% '3/2 L,
w=2.3 Py "B, Z,
where L, is the density scale length (retaining the sign). Note that for hollow density
profiles (L, > 0) or negative shear (Ly < 0) bootstrap current islands cannot form.
Kuvshinov et al (1989) generalize the work of Kotschenreuther ez al (1985) and Carrera
et al (1986) (discussed above) to include finite pressure effects by considering a tearing
parity resistive ballooning mode as a possible candidate for magnetic islands in a tokamak.
Stability of these pressure-gradient driven modes is characterized by a parameter Ag to be
found from the asymptotic form for the solution in the (linear) ideal region (the subscript
B indicates that the quantity is calculated in ballooning space}. In the region around the
rational surface they solve the equations describing continuity, longitudinal equation of
motion (neglecting inertia), Ampere’s law and the longitudinal Ohm’s law (including the
bootstrap current). This gives an expression for magnetic perturbations in the ‘layer’ (related
to Aj through matching to the ideal region} from which the following equation for the island
evolution can be obtained:
dw 1 [A’ + 326G, ( et

or Locr B w dev.s

4.27)

s H))} 42.8)

where G, is a numerical coefficient (G2 =2 0.39). Other parameters are o = —¢f,r/L, and
the longitudinal electron viscosity, ft.; Up is a measure of the average curvature {defined
such that Uy < 0 if the average curvature is good) and H = €B(¢ + «)/s. The terms
proportional to 1/w represent the effects of bootstrap and Pfirsch—Schliiter currents. Strauss
(1981) has shown that A} < 0 if 2H'Y2 « 1. In a tokamak both ¥ and Up are small
compared to the bootstrap current term (proportional to g, in (4.2.8)), especially in the
low-collisionality regime vee < 1, and one may therefore drop these terms when evaluating
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the steady-state island width. In this low-collisionality regime ue = ve+/€ so that (using the
Strauss result for A}) the steady-state island width for the tearing parity resistive ballooning
mode is given by

rf 1\ €rBy

In the limit 8, — O the scaling of (4.2.7) is recovered (though there is a small discrepancy
in the numerical coefficient).

4.2.3. Drift and FLR effects. Smolyakov (1989, 1993) investigates the possibility that drift
and FLR effects may cause a perturbed parallel current. The small-scale islands which result
are thus termed ‘drift magnetic islands’. Considering a sheared-slab equilibrium geometry
{relevant if the island width is much less than the plasma radius) Smolyakov calculates the
evolution of magnetic islands in two limits—p; <« w and p; 3> w. In each case a parallel
current is evaluated from the continuity equation:

1
Vi -(nvp+nvg —TY) = ;VH - 4.2.10)

where vg is the E x B drift, vq; is the diamagnetic drift, I'; is the transverse ion flux
and the subscript j labels the species. The contributions to the ion flux depend on the ion
Larmor radius regime under consideration.

In the regime p; 3 w the large ion orbits average over the electrostatic potential and
the ions take up a Boltzmann distribution so that T'; vanishes. The electron density and
the potential are calculated from the collisional Braginskii equations {continuity, Ohm’s law
and temperature equation) and quasineutrality. These are then used to evaluate the left-hand
side of (4.2.10) from which the parallel current perturbation 4/ can be calculated. The two
equations which result from matching the real and imaginary parts of the island layer to the
ideal layer (through Ampére’s equation} then lead to expressions for the steady-state island
width, w and its rotation frequency, w:

0.25 L% p, [ nci|
W=—-——— 12— — 42.11
A L2 e T B ( )
@ = Wye(l — Ne/Nee) - (4.2.12)

Here, electron and ion temperatures have been assumed equal (ie. T = 1) n, is the ratio
of electron density scale length to temperature scale length, ne = 0.49 and 8 = 2uop/B>.
For high m modes (so that A’ ~ —m/r) we can see that there will be two situations which
lead to instability (island growth):

e > 2er or ne <0 (4.2.13)

(where ., > 0, @y < 0). In the first case the islands are predicted to rotate in the ion
diamagnetic drift direction and in the second in the electron diamagnetic drift direction.

In the opposite limit, p; <« w, fluid equations for the ions are appropriate. The ion
continuity equation is used to determine the ion density perturbations with contributions from
the ion polarization velocity and gyroviscosity included. Following a treatment analagous
to the short-wavelength limit Smolyakov dertves the following expression for the stable
istand width:

AL

3 Ne ne}
w=1l1—-—=|1-—||24+n.——|8. 4.2.14
A L% |: ﬁcr] |: Tl Mer P )
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The rotation frequency is the same as that for short-wavelength modes (i.e. equation (4.2.12))

and the condition to be satisfled for islands to exist is
27

L — e '

Hugon and Rebut (1991) attempt to justify the critical-temperature-gradient model of
Rebut ef al (1989) discussed in section 4.1 by proposing a similar mechanism for self-
sustainment of magnetic islands. Two contributions to island evolution are considered—one
due to the different responses of electrons and ions to the islands (because of their differing
Larmor radii} and one due to an artificial ‘gravity’ (which plays the role of magnetic
curvature). The model is analysed in a slab magnetic geometry with cylindrical effects
incorporated through the gravity., This models unfavourable magnetic curvature and leads
to island growth; in a tokamak (for g > 1) the favourable average magnetic curvature tends
to damp the islands. We shall, therefore, not consider the curvature effects in this model
(see section 4.2.2 for the effects of curvature in a tokamak) but instead describe the differing
Larmor radius effects which have been discussed in more detail in Rebut and Hugon (1991).
These arise when the ion Larmor radius is comparable with the island width. The electrons
have a small Larmor radius and respond to the local electrostatic potential associated with
the island as they move along magnetic flux surfaces. (These are closed within the islands
but open beyond the island separairix, leading to different electron responses in the two
regions.) The ion gyro-orbit, however, samples both inside and outside the island so the
ions have a non-local response to the potential. Thus the electrons and ions move under
different effective potentials and therefore they have different £ x B drifts. This gives rise
to a current perpendicular to the magnetic field which is not divergence free. In order to
satisfy V - J = 0 a parallel corrent must flow and it is this current flow which leads to
island growth. Stable islands are formed when this growth balances the stabilizing A’

The calculation involves the radial electric field which is determined by an ambipolarity
condition for transport in the stochastic region. This field is expressed in terms of the
equilibrium deansity and temperature gradients by taking a Boltzmann electron density
distribution and assuming the electrons travel along the perturbed magnetic field lines with
their thermal velocity. This gives rise to the result:

T. fn, 1T
Eq = L3 &), 4.2.16
b= (nc ) TE) ( )

More formally, one can make a quasilinear estimate of the electron flux uvsing a kinetic
description. Requiring that this flux be zero (to first order in the electron—ion mass ratio)
leads to the following expression for the electric field (Samain 1984):

T. | o \° 1|
Ep==21le — | Ze
¢ e {nc + |:(knvme) 2i| Tc}

which reduces to (4.2.16) for fast electrons, such that o ~ kjvme.
Expressions for the island width can be obtained in the two limits o; > w and g < w.
For pi > w

o < Me < (4.2.15)

2 LE Ne
~ s i 4.2,
w A,L%nc[1+4]ﬁ 42.17)
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for r = 1. It is interesting to note that these results are very similar to those obtained
by Smolyakov (equations {4.2.11) and (4.2.14)) despite the different analytic approaches
employed and the different physical assumptions that have been made (in particular,
Smolyakov’s model has collisional electrons while in the Rebut—Hugon model they are
treated as collisionless). Comparison of the results shows that they exhibit the same
scalings except that the two differ in their coefficients for the 5. terms. This therefore
implies different threshold criteria for the islands to exist. In particular, the Rebut-Hugon
model predicts islands to exist for all positive n,, while the Smolyakov model requires 7.
to lie within a certain range (which can include negative n,) given by (4.2.13) and (4.2.15).
Samain (1984) obtains almost the same result as (4.2.17) but with a different numerical
coefficient (0.3 instead of 2).

The resulting transport in this Rebut—Hugon model is assumed to be important oniy when
adjacent islands overlap, i.e. when a region of stochastic magnetic fleld exists between the
islands. This overlap condition corresponds to a critical temperature gradient which is most
easily reached for o; >» w. For § <« 1 this condition can be written:

gBRL;
2

Overlap for islands with w < g may be more significant for transport and this requires a
larger critical temperature gradient. This could be obtained from a numerical solution of
the full Rebut—Hugon expression for the island width if desired.

Smolyakov and Hirose (1993} have considered the collisionless case when electron
inertia replaces resistivity in the Ohm’s law. Thin islands such that w ~ ¢/wp, & p; are
assumed; thus the ion density perturbation is described by a Boltzmann relation. Fluid theory
is used to describe the electron response to the magnetic and electrostatic perturbations, from
which the perturbed current sustaining the island against the A’ damping can be evaluated.
This gives rise to an expression for the saturated island width in terms of the rotation
frequency, w, of the island. The dominant contribution to the matching condition which
determines @ comes from the resonant region Xjupe ~ w. Because of the assumed thin
islands, this lies far outside the island in a region where linear theory is valid. Thus linear
theory can be used to determine the rotation frequency, w = (1 + 7. /2)w,, and the island
width follows:

2
Ly, <

by .
l 2
w? = (_‘3_) 14ne/2 (4.2.19)
Wpe He
Assuming kg ~ w™!, equation (4.1.5) determines the electron thermal diffusivity:
2
o & (L) Yme [+ 7e/2 (4.2.20)
pe Ly e

4.2.4. Thermal effects on island drive. Thermal instabilities can also lead to magnetic
island formation as a result of a modification of the island resistivity through temperature
perturbations (Rebut and Hugon 1985; Dubois and Mohamed-Benkadda 1991). This then
gives rise to a perturbed current which may drive the island. The electron temperature in the
island s given by the power-balance equation for the electrons; thus the net power increase,
P,, resulting from Ohmic and additional heating, is balanced against losses due to heat
conduction, radiation and electron—ion heat transfer. Assuming thin islands (mw/r < 1)
Rebut and Hugon derive an equation for the electron temperature perturbation §7. in terms
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of P, taking the temperature dependence of P, to be weak, i.e.

dp, P,

—8T, < —. 4221

a7, * " 2 ¢ )
Assuming a resistivity variation ~ T2 then leads to an expression for the current
perturbation in the layer. Matching to the external solution leads to the following expression

for the saturated island width (for m 3> 1)

mr R4 s 42.22)

M Rg

w =

where
2
2P R
Xle T g
with Jp the equilibrium current. The diffusivity x1% is the electron diffusivity within the
island (assumed to be neoclassical). The condition for islands fo form is that M > 0 which,
for ¢’ > O (the usual case), corresponds to P, < 0, i.e. the sinks exceed the sources. This
situation is most likely to occur outside the ¢ = 2 surface where radiation losses are largest.
In the work of Dubeis and Mohamed-Benkadda (1991) the theory of Rebut and Hugon
(1985) is extended to allow for the fact that stochasticity in the vicinity of the island
separatrix reduces the effective size of the island. These authors also use a more realistic
model of the impurity radiation term in the power-balance equation. Specifically, they allow
for a temperature dependence of this term {modelled through a quadratic dependence of the
radiative emissivity on the temperatore} which then permits stable islands on a smaller
scale than those predicted by Rebut and Hugon. Energy balance yields a somewhat more
complicated equation for the island width requiring numerical solution. Two solutions for
the width result—a low unstable one and a higher stable one.

(4.2.23)

4.2.5. Nonlinear ion pumping in a torus. We now discuss this model due to Kadomtsev
{1991) which proposes another mechanism for anomalous transport involving magnetic
islands filling the tokamak. The theory is distinct from those discussed in this section so
far because Kadomtsev does give expressions for x. and these differ from that derived by
White and Romanelli (1989) (i.e. equation (4.1.9)). The basic idea of the theory is that
when an ion in its Larmor orbit, radius g, traverses a much smaller scale magnetic island
it acquires a transverse impulse (i.e. directed within the average magnetic surface) from
electrostatic potentials associated with the island. This impulse produces a velocity AV
where

AV ~ kgcé;% (4.2.24)

and w/V, is the transit time across the island. This causes a radial shift AV /wg in the
guiding centre. During the time Az ~ ! that the island remains in phase there are multiple
crossings which produce a net shift

Wy e¢ kyw
e MiVL @y

due to a single island. However the ion interacts with N = p;/w neighbouring islands
during its orbit which will produce uncorrelated shifts. These are therefore considered as a
sequence of random shifts so that their net effect is given by:

& = 8N, (4.2.26)

dg ~ (4.2.25)
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The island pattern due to N similar waves with the mean frequency w, and a similar spread
Aw ~ w, will be quasi-periodic on a longer period ©2~! where 2 = w,/N. During this
time the shifts can again be summed in a random fashion to yield a total radial shifi

5~ NV2§ ~uw 4.2.27)

Thus the ion can step in a stochastic manner from one island chain to another.

Since the period 2 is so long, this is a slow process and the magnetic moment p
is conserved; in an homogeneous field its energy is therefore also conserved. In an
inhomogeneous toroidal field, however, a shift of the ion position to larger major radius can
liberate energy to pump the islands. Over many periods Q™' the shifts will time average
to zero. However, a mechanism for a systematic shift exists if the islands are slanted with
respect to the mean magunetic surface by an angle y, which can arise if the island structures
are touching each other. Because the islands are slanted, a component of its electric field
lies along the radial direction producing a poloidal shift yé. This prolongs the interaction
time with the island and Az — (1 + ykedp)w]!, resulting in

o — dp(1 + ykedo) . (4.2.28)

A systematic radial shift (§} ~ yk952 follows from averaging the quadratic term. The
corresponding flux as the jon intersects the N neighbouring islands in the time At ~ o]’
is

' ~ nwN{8) ~ “]:"kaw VeniH (4.2.29)
directed along the major radins. To obtain a net flux accross a toroidal surface and island

pumping it is necessary to take y ~ ppecos@ so that averaging over a toroidal surface
element produces

D~y ekew Uths - (4.2.30)
Simultaneously the island is pumped at a nonlinear rate

K

i Rzkgw vt T 4.2.31)

where F; ~ ypw/L,.

‘We turn now to the electron dynamics which are described by a simplified drift-kinetic
equation. Kadomtsev argues that for low collisionality plasmas, dissipation effects on a
single island structure are hot important and the island is free to grow due to the ion pumping
above. The electron motion takes the form of drift islands displaced from the magnetic
islands. As the magnetic island grows the drift islands grow at the same rate and eventually
overlap so that the electron motion becomes stochastic, allowing a transfer of longitudinal
momentum between magnetic islands. Kadomtsev interprets this as an anomalous resistivity,
with an anomalous ‘collision frequency’. v, ~ kjvme ~ (Ume/qR)ksw. Because of the
increase in dissipation with w. the island width will saturate at some value. This can be
quantified by balancing the ior ‘pumping’ growth against the electron dissipation damping,

dE Ughe w kg 32 F
3~ Rq 8marz ¢
where F, is a measure of the island overlap.
2

Predictions for anomalous thermal diffusivity, x. ~ v,w*<,
weak island contact and strong island overlap. Thus

Ko = Dokow’we (4.2.33)

(4.2.32)

are made in two regimes—
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where the degree of overlap is represented by a factor ®.. In the weak island contact
limit the island pumping by the ions is assumed to be small so that the electrons are able
to saturate the width at a relatively low value. An estimate of @, is made as follows, In
toroidal geometry stochastization occurs in a layer near the island separatrix of width ~ ew.
An exchange of electrons within this layer then gives rise to a radial heat flux, which is
most efficiently transferred by the slow passing electrons (i.e. ~ €12 of all electrons in
the layer) leading to an overall scaling €>/2. The island width is assumed to scale like the
collisionless skin depth (c/wp.) and &y is assumed to satisfy k;w ~ 1, so that

2
Yo ~ €% (—C—) : (4.2.34)
Wpe

Stronger transport results when the islands have much more contact. Then the island width
is obtained by balancing the island pumping by ions against the damping by electrons to
give, again for kgw ~ 1,

w? gr [m,
YL [T 4235
r? R‘Bﬂ m; (4235)

This yields the following form for the thermal diffusivity

o
Xe = Q%rsﬁe (42.36)

where it is supposed that C. is only weakly dependent upon the plasma parameters.

4.3. Conclusions

The Rechester and Rosenbluth formula provides an expression for the diffusion arising
from a spectrum of magnetic fluctvations. These magnetic fluctuations can arise from fine
scale magnetic islands and a variety of nonlinear driving mechanisms have been discussed, a
number of which are proportional to 8. A generic form (4.1.9) for the Rechester—Rosenbluth
diffusivity arising from such islands was obtained. This has neither a Bohm or gyro-Bohm
scaling if the number of toroidal modes, ¥, is treated as a constant; however, N may depend
on g, = pi/a and a somewhat novel scaling could emerge. The ion-pumping mechanism of
Kadomtsev also leads to a y. scaling essentially indepandent of p,. On the other hand the
semi-empirical formula of Rebut-Lallia~Watkins is gyro-Bohm but it would be desirable to
generate a more sound theoretical basis for it.

Testing of these models against JET data (other than the well advertised tests of the
Rebut-Lallia—Watkins model) was camied out by Tibone et ol (1994). The ion-pumping
model provided the best radial profiles and parameter scalings.

The Rechester and Rosenbluth formula snggests that the rapid electrons will escape more
readily than the jons, leading to a positive radial electric field (in the rest frame in which
the magnetic fluctuations appear stationary). This is indeed the case for externally produced
magnetic perturbations but for self-consistent fluctuations satisfying Maxwell’s equations
quasilinear theory indicates that transport is automatically ambipolar (Waltz 1982); the
radial electric field is determined by viscosities instead.

Finally we note that some of the mechanisms encountered in driving laminar magnetic
islands in this subsection (e.g. bootstrap currents) also play a role in fully developed “fiuid’
turbulence theories which we describe in section 5.
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5. Resistive fluid turbulence

5.1. Overview

In this section we consider the instabilities of a plasma described as a ‘resistive” flnid, noting
that ‘resistive’ is to cover both neoclassical effects and the consequences of electron inertia
in Ohm’s law. We shall see that transport can result from two sources: turbulent mixing and
a “stochastic’ radial diffusion. The latter is as a consequence of the magnetic fluctuations
which are predicted to arise because of the instability. These can interact to form stochastic
magnetic fields, and a subsequent radial transport by parallel motion. In the following
subsections we shall consider two types of resistive fluid instability: resistive pressure-
gradient driven modes in section 5.2 and resistivity-gradient driven modes in section 5.3.
Some conclusions follow in section 5.4.

5.2. Resistive-pressure-gradient driven transport

In this subsection we consider the transport which would result because of instability to a
resistive-pressure-gradient driven mode. In the limit of cylindrical geometry, where there
is unfavourable curvature, the mode is unstable and has an interchange natore (and is thus
termed the resistive interchange mode); it is relevant for a description of the transport
in RFP’s or stellarators where there is bad average curvature. In a tokamak the average
curvature is "good’ when g > 1 and therefore this mode is usually stable. However,
tokamaks are truly toroidal, requiring a full toroidal treatment of the pressure-gradient driven
mode. The mode then has a ballooning nature and the bad curvature region can dominate.
This (resistive ballooning) mode may be unstable in a tokamak and is the instability on
which we concentrate in this subsection.

The equations describing a plasma as a resistive fluid are invariant under certain sets
of scaling transformations of the various plasma parameters. This invariance can be used
to determine the dependence of the diffusivity on these parameters. In fact, if sufficient
assumptions are made about the equations which govern the turbulence evolution then a
complete scaling of the diffusivity can be derived. This has been done for the resistive
pressure-gradient driven mode (Connor and Taylor 1984) where two contributions to the
transport are considered—a convective cross-field diffusion and a loss due to parallel
transport along the stochastic magnetic field. The turbulence is considered in the following
limits:

a1 n/s « 1 Bg*je < 1 (5.2.1)

where »n is the toroidal mode number, § = r/Ta (With the resistive diffusion time,
and the poloidal Alfvén time, T, defined by w = por?/n and za =-(kopm)/?Rq/B
respectively, where 7 is the plasma resistivity and p,, is the mass density). Assuming that
the diffusion coefficient scales as the square of a radial step size to a time step, the invariance
transformations lead to the following result for the convective diffusion ceefficient:

o
D, = 8‘0l (—) (5.2.2)
o S
where g is a constant factor and
2uoRg* dp ;
=— . - {52
o BT dr (5.2.3)

The radial transport due to parallel diffusion along the stochastic magnetic field lines
is given by (4.1.2). Two collisionality regimes may be considered—highly collisional
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(such that Aysp < L) and collisionless (such that Amgp > L). For the collisional case
the dominant mechanism for decorrelation of the electton paths is collisions, so that
Dy = (v%,/ve)(8B/B)%. Using the invariance transformations of the equations describing
the turbulence:

§B\* €2 ran\snr
(?) - g[qz—S(;) (5.2.4)

where g is a numerical coefficient. This gives the following result for the diffusion due to
the stochasticity of the magnetic field lines in the collisional limit:

vi. €% ran\52
Dy — g, the _(_) . 5.2.5
L=2&i Ve g2S \s { )

In the collisionless case, the electron path is correlated over the magnetic-field-line
correlation length L., This is calculated by assuming that the diffusion of the magnetic
field lines is described by a random walk whose characteristic step length, Ar, is given by

Ar = (§B,/B)L, (5.2.6)

and deriving the forms of Ar and (§B,/B) using the scaling arguments. Substitution into
(4.1.2) then leads to the following result for the stochasticity diffusion coefficient in the
collisionless limnit:

pr: (5.2.7)
Renormalized quasilinear calculations (Carreras et af (1983b)) are of necessity in agreement
with these diffusion coefficients.

Subsequently Carreras et al(1987) considered the nonlinear calculation of the diffusion
resulting from the resistive interchange mode. The equations are similar to those considered
by Connor and Taylor (1984) apart from two extra terms appearing in the pressure evolution
and vorticity evolution equations which are included in order to model the viscosity u and
cross-field thermat diffusivity x:. A linear analysis of these equations indicates that these
two terms are crucial in identifying a saturation mechanism for the nonlinear analysis.
It is found that for non-zero values of both s and x. there exists a critical poloidal
mode number m, above which the plasma is stable to the resistive interchange mode.
Saturation occurs when the rate of transfer of energy from the unstable low m modes
to the stable high m modes equals the rate of increase of energy driving the instability.
Renormalization techniques are used to represent the nonlinearities in terms of a ‘nonlinear’
diffusion coefficient and viscosity so that the equations resemble the linear expressions with
enhanced transport coefficients. Solution of the equations leads to an eigenvalue expression
which, for zero growth rate, gives the following relation between the nonlinear diffusion
coefficient and viscosity:

D = DA (5.2.8)

where Dy represents a mixing-length expression, i.e. the cylindrical analogue of D (see
(5.2.2)). The enhancement A is a logarithmic factor (dependent on the vigscosity and 2}
which enters wholly as a result of the introduction of the renormalized diffusion and viscous
terms and can lead to a significant increase in the predicted diffusion over mixing-length
estimates (without significantly altering the scaling).

Of course, resistive interchange modes are of little relevance to tokamaks but they are
closely related to the resistive ballooning mede. Comparison with the results of Connor and
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Taylor (1984) suggests the following form for the enhancement factor A in the case of the
resistive ballooning maode:

2 T o6dart :|
A==1In [—-—- . (5.2.9
37 m4tiMnID )
The nonlinear viscosity, iy is related to the diffusion, D through
m2\"*p
_ L 2.
Ml ( (mz)) A (5.2.10)
and
D=D.A 5.2.11)

where D, is the result of (5.2.2). An iterative solution of (5.2.11) yields an expression for
D in terms of the plasma parameters:

2 64rt 203, 172 23
D=—gtZin|—s b ) iy (5.2.12)

3% o s \mtqcl |\ m? ginta
This expression involves the poloidal mode number m ({m?)}/? is its RMS value) and a
value for this needs to be chosen. Numerical simulation indicates that the most important m

value is such that m = (m?)1/2 and that (m?)'/? varies with the parameter 8/(2¢2). Carreras
et al (1987) quote a table of m values as a function of 8/(2¢%)

B/(2e*) (m?)1/?

0.0025 12

e
0.0100 3

0.0125 3.

The heat transport due to stochastic magnetic fields set up by instability to resistive
pressure-gradient-driven turbulence is analysed by Carreras and Diamond (1989) using the
Rechester and Rosenbluth formula, The ‘collisionless’ limit is used and an expression for
the correlation length, L., in terms of the magnetic fluctuations is invoked. The magnetic
fluctuations are related to those in the electrostatic potential through Ohm’s law. Assuming
the spectrum of poloidal wavenumbers again satisfies m = {m?)!/2 then yields the electron
thermal diffusivity due to resistive ballooning modes:

I 1 1 g%/ R\ vmer?
— T (g0 Uhe 5.2.14
(s12) (5214

Here (n2)!/? represents an rms average of the toroidal mode number for the instability, and
is related to the poloidal wavenumber through m = ng. |
Diamagnetic effects modify x. (Carreras et al (1983a)) through the substitution

nz
Xe = Xe (—“) (5.2.15)

(n)? +n?
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with €g = a/R, a being the plasma minor radius.

where
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The thermal diffusivity due to the resistive ballooning mode in a magnetic geometry
which has a separatrix is calculated by Hahm and Diamond (1987). Considering a simple
equilibrium where the separatrix has two X-points, they investigate how such a geometry
affects the diffusivity. An identification of the saturation mechanism for the turbulence is
required and this is assumed to occur when the pressure fluctuations are such that they mix
the pressure gradient over the radial mode width. The following expression for the thermal
diffusivity due to stochasticity of the magnetic field is obtained:

Xe = Fr(0)x". ' (5.2.17)

Here x° is the value of the diffusivity in a circular flux surface geometry:
3 1 fap\7?
o_ = ol i

X = 2UmerS (Sc ) (5.2.18)
and f, (o) represents the effects of the flux surface shaping:

- 9/4
Folo) = (.S_) v (i)w 32/3( E-(-p)K )m (5:2.19)

* S g (L+p)E ~ (1 — pHK
where K (p) and E(p) are the complete elliptic integrals of the first and second kind:
1 dt 1 1 — p22
K@= [ Bo=[ @ - (5220)
o (1 —12)(1 — p4D) 0 1—12 :

with p a radial parameter, p = r/r; where r is the minor radius, measured along the
symmetry plane (6 = 0) and r; is the value of r at the separatrix surface. The safety factor
g has the usual definition and g, is the cylindrical limit. The shear parameters are defined
as s =dIng/dInp and s, = d Ing./d Inp. Other parameters are the pressure gradient,
e
. 2[.&9?‘02 dp

Oy By dv (5.2.21)
and S = tr/7s as defined previously. Here, 1 is the poloidal flux function, so that this
definition of ey reduces to that of (5.2.3) in the circular flux surface limit.

So far we have described the pressure-gradient-driven turbulence through the resistive
MHD equations, which are strictly only valid in the short-mean-free-path (Pfirsch-Schliiter)
regime. At lower collisionalities (in the banana or plateau regimes) trapped-particle effects
can become important through their viscous interaction with the circulating particles. For
example, in the presence of a pressure gradient, this viscous interaction gives rise 10 an
additional current, the so-called bootstrap cugrent. Connor and Chen (1985) use gyrokinetic
theory to derive the linear stability properties of the pressure-gradient-driven mode in a
low collisionality plasma. Even in the absence of curvature instability is possible due
to the bootstrap current and neoclassical viscous damping. Because of its role in the
driving mechanism, this mode is sometimes referred to as the ‘bootstrap cumrent mode’. An
alternative linear analysis of the bootstrap current mode was given by Callen and Shaing
(1985) using a set of modified fluid equations that take into account neoclassical effects.
These give the same result for the linear growth rate as that derived using gyrokinetic theory
by Connor and Chen. The nonlinear theory and resulting transport has been investigated by
Kwon ez al (1990) using this set of neoclassical MHD equations. The saturation mechanism
for the turbulence is similar to that described previously—only low m modes are unstable
and as the mode grows, the nonlinear terms transfer energy to the stable higher m modes
where it can be dissipated. To describe such a saturation mechanism a full two-point theory
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would have to be employed. Kwon et al instead use a one-point method whereby the
nonlinear terms are renormalized to give turbulent diffusivities. Saturation is then assumed
to occur when the diffusivities reach such a level that the growth of the fluctuations vanishes.
This leads to an eigenvalue equation, which can be solved to yield the following expression
for the pressure diffusivity:

L
D AL 5.2.22
[J 8.71' qﬁpu e Lp n ( )
with
A2 = 3670 — 142085 02871 — 112 (5.2.23)
and
He/ (0 Ve)
= (5.2.24)
¢ [1+ pte/{otere)]
in terms of the following definitions:
fe = 2.3-/6v (5.2.25)

[14+ 1.02v12 + 1.07v,.]

o = 0.51. L, = —(dIn p/dry~! and By is the poloidal beta. This neoclassical instability
also gives rise to stochasticity of the magnetic field, which can therefore result in enhanced
electron heat transport

a6 % 10%uneLs [ S| 8P| " =23 T3 5.2.26
Xe =40 X Uthe s[gﬁp] e '}‘?I_Lg " ( iy )
where m needs to be specified.

The expressions above are controlled by collisional {or neoclassical) resistivity. Itoh
et al (1993} invoke a model involving anomalous electron viscosity in the OChm’s law.
Introducing an anomalous fluid viscosity and thermal diffusivity in the vorticity and
thermal equations respectively they obtain an unstable ballooning mode. Assuming that the
anomalous transport coefficients are all due to turbulence associated with this instability they
can be related through their quasilinear expressions. Their values when the corresponding
turbulence is saturated can be obtained by demanding that the most unstable mode is
marginally stable. The result for the fluid thermal diffusivity is

z 32
VA [ o
=—({— ] — 5.2.27
x gR (wpe ) h(s) ( )

where £(0) = 1.7, k(s > 0.7) = 2.5s5. This can be considered as an analogue of the work
of Carreras et al (1987) for a collisionless fluid.

Recently Connor (1993) has pointed out that the anomalous transport coefficients can
arise from renormalizations of the electron inertia in the collisionless Chm's law. Using
invariance techniques Connor obtains a similar result to (5.2.27) and also an expressmn for
the associated stochastic magnetic field electron thermal diffusivity:

2. 2
s = e (i) il (5.2.28)
Rg \wp./ 5

These forms are valid for fluid electrons with «« > #1; 8./ m.. In hotter plasmas where the
reverse inequality holds, a kinetic Ohm’s law is required. Using the Ohm’s law suggested
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by Kadomtsev and Pogutse (1985) which incorporates electron Landau damping, Connor

obtains
Uthe [ 2
X = R (w_) o (5.2.29)
pe
and
3/2
Yhe { € o

for fluid turbulent convection and electron transport due to the associated stochastic magnetic
fields, respectively.

5.3. Resistivity-gradient driven transport.

Resistivity-gradient driven turbulence can result from two sources: a gradient in the electron
temperature or a gradient in Zeg (i.e. an impurity density gradient). The instability cansed
by an electron temperature gradient resulting in a radial variation of the resistivity is often
called the rippling mode. This is a mode which is of a resistive MHD nature and is driven
by aradial gradient in the current (which exists as a consequence of the resistivity gradient).
A high electron collisionality is necessary in order to overcome the stabilizing influence of
the parallel electron thermal conduction, and this would imply that this mode could be
relevant to transport at the tokamak edge. The linear stability of the rippling mode in a
sheared slab is investigated by Hassam and Drake (1983) using Braginskii fluid equations
with a modified Ohm’s law (Hassam 1980). The modification is due to the time-dependent
thermal force which exists in the presence of a temperature gradient. This term is neglected
in Braginskii’s equations which are valid only in the limit that the parallel diffusion rate
for the electrons is larger than the mode frequency. Hassam’s modified fluid equations
contain this extra drive and so are useful for investigations of the linear stability of the
rippling mode. Hassam and Drake (1983} identify three regions in parameter space. In
region I, at very low temperature, the mode is described by an Ohm’s law in which parallel
pressure perturbations are small compared to the resistivity perturbation, and then the mode
is found to be purely growing in nature. As the temperature rises the plasma enters region
" II where the pressure perturbations become more important, with density fluctuations being
described by the electron continuity equation. The mode frequency then gains a real part
which is of the order of the diamagnetic drift frequency but the mode is still unstable.
As the temperature is raised still higher, the collisionality drops, the parallel conductivity
rises and the mode is stabilized—this corresponds to region III. Thus the stability boundary
is the boundary between regions II and III. Numerical calculation (qualitatively supported
analytically) indicates that the rippling mode is unstable for

2/3
T<3.Os><104 B*Lge ( Ls. (5.3.1)
P GyLreP | T3P \qoR B

with kLt ~ m, the poloidal mode number. Here, the units are SI except for temperature
which is measured in V. The subscript zero indicates the parameter measured at the
plasma centre, which enters because of the model chosen for the plasma current density
i1 = 2(B/goR)(T/ To)*/*]. For JET-like parameters this critical temperature is of the order
of a few 10's eV and therefore the mode will only exist right at the plasma edge (if at all).
The transport due to turbulence induced by the rippling mode is analysed by Garcia ef al
(1985).
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As mentioned earlier, a radial variation in the impurity concentration can also give rise
to a resistivity gradient and thus cause rippling-mode turbulence. Impurities are included in
the analysis of Hahm er af (1987) where it is found that their effect is to give an additive
contribution to the total transport due to resistivity-gradient driven turbulence. Whether
the transport is enhanced or diminished by the impurity gradient depends on whether the
impurity concentration increases or decreases towards the plasma edge. A linear calculation
by Tang et al (198R) indicates that the critical temperature for stability (i.e. (5.3.1)) is raised
if the impurity profile increases towards the plasma edge (though it is still expected to lie
in the region of the order a few 10s of eV).

The most recent modification to the theory is by Thayer and Diamond (1987, 1990)
who include radiation effects due to impurities, which may be important at the plasma
edge. The earlier work also encompasses the previously mentioned calculations involving
resistivity-gradient turbulence so we shall restrict ourselves to a description of that, Tt
considers turbulence driven by resistivity and impurity gradients with saturation occuring
because the turbulence enhances the paralle]l conduction of heat and impurities which damps
the energy source. The effects of radiative cooling are also included and are found to
enhance the transport. The model which is employed consists of four fluid equations
describing a parallel Ohm’s law, vorticity evolution, resistivity evolution (or, equivalently
the temperature evolution) and an equation describing the dynamics of the impurities (which
is derived from the continuity equation for the impurity and main species ions). Radiative
cooling is due to an impurity radiation rate, Iz(7"), defined such that it cools the temperature
according to

3dr

—— ~ —ngzl 3.

T nzlz(T) (5.3.2)
where nz is the impurity density. The dependence of the particle diffusion coefficient on

1z(T) appears through the ‘growth rates” yr and yz where

2 I df
ve=3nz (7‘? - d—j‘f) (533)
o Iz
Yz = (ﬁ =+ nz) T (5.3.4)
and ng is the main species (singly charged) ion density. For a low Z impurity such that
nzZ & n ngZ* > n; (53.5)

the following equation is derived for the particle diffusion coefficient, D,:

D, D\ D\ *
Do = {1 +nz [1 + Tz —Tr) (Fo) } +Tr (E) (5:3.6)

a3
Do = (in‘;”) (k)7 (537)
where 7 is the resistivity, J; is the toroidal current density, B, is the toroidal field, L; is the
shear length, nz = L,/Lz, Lz = [d(In Zex)/dr]™! and Ly = [d(nn)/dr]~t. The impurity
parallel diffusion, xz = (m;i/mz)"/*v2,/(Z%v;) and xr is the thermal parallel diffusion of
the electrons (x7 ~ xzZ*(mz/me)/?). The parameters Iz and 'z are related to vz and
vz through

with

Cr=yvyr/¥r Tz =yz/7z (5.3.8)
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where

- LI\ ., 13 - 13
vR=\ T4 (xrk;*) ¥z = ¥r(xz/Xr)"" . (539
i Rt 4

Finally, &y = (m — ng)/(Rg) = mx/(rL;) where R is the major radius, m the poloidal
mode number and r is the minor radivs of the rational surface about which the mode is
centred. The prime on & indicates derivative with respect to the distance from the surface,
x; thus k) = m/(rLs).

Equation (5.3.0) can be solved in certain limiting cases. When radiation effects are
small Tp €1, Tz K1)

D, = Do(1+ nz)¥? {(5.3.10)

which is the result derived by Hahm ez al (1987) where the resistivity-gradient driven mode
was investigated without consideration of the radiation effects. The limit of no impurities
(ie. nz — 0, the rippling mode) is in agreement with the calculation of Garcia ef al (1985).
Expressions are also given for the impurity, Dz, and temperature, Dy, diffusivities:

Dz =D, Dr = (xz/xr) Dy . (5.3.11)
ForTr > 1,1z
D, = D% (5.3.12)

while in the limit that T'z > Tz, Tz > 1, 1zlz > g and nzlz > 1 are satisfied, we
have

Dy = Do(nzlz)*°. (53.13)

The above work makes the assumption that the pressure remains constant (i.e. the
density fluctuations exactly cancel the temperature fluctuations). In fact this is a poor
approximation and leads to a significantly larger transport due to the thermal instability than
would otherwise be obtained. This is demonstrated in a later calculation by Thayer and
Diamond (1990) where the model considered consists of the evolution equations for the
temperature, density and parallel velocity fluctuations (the impurity density profile is taken
to be constant in this calculation, i.e. 5z = 0). In the analysis described above the effects of
the radiative instability could be described in terms of a single growth rate yg (see (5.3.3))
due to the fact that 7i/n = —7/T. If this constraint is dropped, then two ‘growth rates’ can
be defined—one describing the instability driven by density fluctuations, ¥, and the other
by temperature fluctuations:

m=gnze  yr=—in (5.3.14)
(where yr = ¥; + ¥r). The drive due to density fluctuations (called the condensation
instability drive) is a robust instability because if more than one impurity exists many
Iz{T} spectra contribute to a total, thus enhancing the growth. The same is not true of the
thermal instability drive, however, because for a given temperature, T, diz/dT can have
different signs for different impurity elements, and therefore extra impurities can either
enhance or suppress the growth of the instability. For this reason, the thermal instability
is also referred to as a ‘fickle’ instability. The calculation proceeds in a similar manner to
the one described above in order to derive the factor by which radiation enhances the radial
diffusion. No diffusion coefficients are calculated in this work, but the result indicates that
'z of the previous theory can be replaced by

T'g = 1+ (Xa/X7) T (5.3.15)
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where T; = yug (k2" for j = T,n, with v0 = 3VieopLs/(dm RoBoLr) and
Xn = vfhi/viz, xXr = vic/vee. For typical tokamak parameters x,/xr ~ 107° and so
the replacement of (5.3.15) represents a significant reduction in the transport. In particular,
in the (radiation dominated) limit, I'; > 1,

D, = Dyllr + (Xa/xr)* T, (5.3.16)

thus indicating that the robust condensation instability has a negligible effect on transport,
which is now seen to be dominated by the fickle instability. An estimate of the level
of reduction in the transport can be obtained by evaluating the ratio I'y/ Tz, Assuming
¥ = ¥r (3.3.16) gives rise to at least a factor of four reduction compared to (5.3.12). Thus
the diffusion due to a radiation dominated instability is actvally much lower than was
originally thought and (5.3.16) should be used in preference to (5.3.12).

The above analyses of the resistivity-gradient-driven mode employ the reduced, resistive
MHD equations which are strictly only valid in the Pfirsch-Schiiiter collisionality regime.
Kwon et al (1989) perform a calculation of the transport due to the mode using
neoclassical equations, which are relevant for a description of a plasma in the banana-
platean collisionality regimes. The principal difference between this calculation and those
of reduced MHD is that the resistivity in the banana regime becomes dependent on the
plasma density as well as the temperature and thus the rippling mode (which, as described
earlier, is driven by a resistivity gradient} is now able to tap the free energy source of
the density gradient. Impurity gradient effects, radiative cooling and w,. terms are not
included and one-point renormalization theory is used to derive coupled equations for the
time evolution of the density and temperature fluctuations. Requiring a stationary saturated
solution provides a solubility condition on the resulting equations, from which expressions
for the radial diffusivities of the temperature and density can be evaluated. These are:

cE\ LT 0 e

D = I:(C;:+C:77e)( =7 )} [k~ (5.3.17)
r CEWLN\T? e

D" = |Gt Ctne)( BIIE, S)] [xeki2] 2 (5.3.18)

where D™ are the radial diffusivities for density and temperature. The parameter x, =
2/ where i = 0.66¢Y2v;/(1+1.03v*+0.311,;) and y; is the electron parallel thermal
diffusivity. Finally,

4.51€12(0.51 % + 1.07 45112 -
€, = 2210 e + 1. 070ue) (1+ = ) (5.3.19)
(14 1.020487 + 1.07v,)? 1+ 1.02082 + 1.07v.
Cr=3-2C,. (5.3.20)

All the diffusivities presented in this section depend on the poloidal mode number m
and a value for this needs to be selected. Assuming it to be a constant with respect to
the plasma parameters, it can be absorbed into the normalization coefficient (to be fixed
by comparison with experiment}). Scaling arguments indicate that (for large m) m is not a
constant with plasma parameters but in fact scales as

ugSY2K =y Re T,
L,s3B
where K = x7a/(Rgq)? for a pure plasma and K = xz7a/(Rg)? when impurities are

present (Connor 1988). If (5.3.21) predicis a small value for m then this is outside its region
of validity and m could be regarded as a constant to be absorbed into the normalization

(m?) (5.321)
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coefficient. (It is interesting to note that the numerical calculation of (m?%)'/2 in the case of
the resistive ballooning mode appears to indicate saturation at (m?)'* ~ 3 (see (5.2.13)).
This may represent a cascade to long wavelengths (n ~ 1) with (m?)!/? determined by the
geometry (ie. n = 1, ¢ = 3 and m = ng) in which case one is justified in taking (m?)'/?
to vary like g).

5.4. Conclusions

The fluid models used in this section are relatively simple. This has the consequence
that powerful scale-invariance arguments can often determine the form of the diffusivities
uniquely, up t0 a normalization constant. Furthermore, numerical simulation has been
widely used to corroborate and guide analytic turbulence treatments. Rippling-type modes
including impurity radiative cooling effects tend to be restricied in their validity to the
plasma edge but detailed and encouraging comparisons between theory and experiment
{e.g. Leboeuf et al 1991) have been carried out. While other resistive models are also valid
only near the plasma edge, generalizations such as including neoclassical effects or electron
inertia allow them to be extended to the core. Those involving pressure-gradient drives are
promising contenders for describing L-mode power degradation. Furthermore they are able
1o produce thermal diffusivities which increase to the plasma periphery. These features are
evidenced by the comparisons with JET data by Tibone et al (1994).

6. Overall conclusions

The main purpose of this review has been to provide a source of theoretical expressions for
anomalous thermal transport coefficients available for ready comparison with experimental
data—-as a corollary validity constraints are emphasized. In addition we have sketched the
theoretical models employed in deriving the expressions. We have concentrated on the
more recent developments in ion and electron anomalous thermal diffusivities, extending
and bringing up to date earlier reviews by Liewer (1985), Ross et ! (1987) and Horton
(1990). In section 2, after setting the scene by describing earlier work, we considered the
extensive recent literature on slab 7, toroidal V'7; and trapped-ion modes. The latter two
modes are often considered as serious contenders as an explanation for y; and detailed
calculations of the stability criteria have been carried out. However, most of the resulting
expressions for y; are of the gyro-Bohm-type and fail to describe the experimental profile,
though confinement time scalings with respect to power, density and, for some more recent
models, current are reasonable. Considerable effort continues in an attempt.to produce
Bohm-like featores and better radial profiles.

Section 3 addresses the many drift-wave models for electron transport, some generic only
depending on the existence of drift-wave turbulence, others related to specific instabilities.
The large number of models stems from the many instabilities, choices of mode structure
and saturation mechanisms and whether the fluctuations are electrostatic or electromagnetic.
Again the models are invariably gyro-Bohm and have difficulty with radial profiles even
when they are able to reproduce confinement time scalings.

Theories of electron transport based on nonlinear magnetic island instabilities have
been very popular recently, with many mechanisms, such as bootstrap current or FLR
effects, being invoked to cause their growth. As a result these models are described in
somewhat more detail in section 4. Island growth mechanisms tend to increase with S,
suggesting a link with power degradation observed in L-mode. However, the most successful
model, the semi-empirical gyro-Bohm Rebut-Lallia—Watkins model, lacks a real theoretical
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derivation. Transport due to stochastic magnetic fields caused by these islands according
to the Rechester—Rosenbluth formula tends not to depend on the actual driving mechanism.
However, there remains a freedom in the choice of the number of contributing islands which
can affect the p, scaling of x,. The somewhat heuvristic ion pumping model of Kadomtsev
is independent of p, but captures features of the experimental y. for L-modes.

Finally in section 5 resistive fluid models are described. These simple models invite
the use of scale invariance and numerical simtlation to support analytic treatments. The
neoclassical and electron inertia modified versions of the pressure-gradient models can be
extended into the core and have a number of encouraging features for describing L-mode
plasmas.

A number of the transport coefficients given in this review rely on the Rechester and
Rosenbluth theory for transport in a stochastic magnetic field which refers to test-particle
transport. Many authors assume this to be equal to the electron heat transport. However,
Terry et af (1986) question this association because it neglects important self-consistent field
effects; when these are taken into account the transport is governed not by the magnetic
fluctuations but by the electrostatic fluctuations. Later work by Krommes and Kim (1988)
criticises the analysis of Terry et a! and claims that such estimates of transport are often
adequate.

Comparison between many of the theories considered in this review and JET data have
been carried out in Connor ef al (1993) and Tibone et al (1994). The reader is invited to
refer to these papers for details but the general picture is

(i) the x; models are generally unsuccessful and refinements are needed

(ii) some electron models, in particular stochastic transport due to electromagnetic drift
waves, Kadomtsev’s ion pumping of magnetic islands and pressure-gradient fluid models
with electron inertia included in the Ohm’s law, are more promising.

Much recent theoretical activity, not considered in this review, has been devoted to
the role of the radial electric field or sheared toroidal and poloidal flows on stability and
transport, since these are thought to be involved in the confinement improvement of H-
modes. Another topical theme is seeking explanations for global mode structures (e.g. due
to toroidal coupling or cascades to long wavelength) in an attempt to justify Bohm-like
scalings.

As a final remark we comment on the many expressions for diffusivities deseribed in
this review. These result from a multitude of limits and assumptions employed in the
analyses and could be reduced in number if more numerical simulation were employed to
isolate which of these results are really justified. Thus considerable progress with transport
due to the slab n; mode has resulted from confronting analytic estimates with numerical
simulation results. Furthermore, those features of the theories which are really robust should
be emphasized rather than factors ‘“teased’ out of the analysis in some extreme Limit or from
an assumed model for the saturation mechanism.

We conclude this review with the hope that it provides a useful reference for those
wishing to interpret transport data in terms of theoretical modeis and a basis for future
reviews.
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Appendix A. Standard definitions

In this appendix we list the standard definitions which we use in this review,

ks Boltzmann constant

P Mass density

R major radius

7 resistivity

. _ [k o = (28T ro L
s = - thj = m; = 7
e; B Vth § 5
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Appendix B. Summary of diffusivities

The following pages provide summary tables of the various expressions for the transport
coefficients that have been described in the text. Standard definitions are given in appendix
A. However, in order to avoid a lengthy list of the non-standard definitions, the reader is
refered to the relevant section of the main text for these, We have used the same notation
for these tables as in the main text and the units are SI unless specifically stated otherwise.
In the table for transport induced by ITG turbulence we shall usually quote results for F,
where y; = FpZc/L,. In the table for magnetic island theories we have defined
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